
Hierarchical, multi-label classi�cation of scholarly

publications:

modi�cations of ML-KNN algorithm

Michaª �ukasik, Tomasz Ku±mierczyk, �ukasz Bolikowski, and Hung Son
Nguyen

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw

{m.lukasik, t.kusmierczyk, l.bolikowski}@icm.edu.pl

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw
son@mimuw.edu.pl

Abstract. One of the common problems when dealing with digital li-
braries is lack of classi�cation codes in some of the documents. In the
following publication we deal with this problem in a multi-label, hier-
archical case of Mathematics Subject Classi�cation System. We develop
modi�cations of ML-KNN algorithm and show how they improve results
given by the algorithm on example of Springer textual data.

Keywords: document classi�cation, multilabel classi�cation, hierarchi-
cal classi�cation, ML-KNN, YADDA2 software platform

1 Introduction

Document classi�cation is an old problem and does not require a computer
to be solved. A good example is a library, in which categories are assigned to
books. A problem that occurs with manual approach is scalability. Automatic
text classi�cation is considered since 1960s [1].

Nowadays, document classi�cation is a common problem. Sebastiani [1] brings
up such examples as: document indexing, document �ltering, meta-data extrac-
tion, word sense disambiguation, creating hierarchical catalogue of Internet web-
sites. This list can be extended with analysis of emotions expressed by a text's
author [2]. An important problem which appears when dealing with text corpora
is assigning classi�cation codes to documents, based on previously classi�ed doc-
uments.

In this paper we inspect an established multi-label classi�cation algorithm:
ML-KNN. We show a problem that might occur when dealing with noisy data
and develop a new KNN-based algorithm that is more resistant to noise. We also
use an established method of dealing with hierarchical classi�cation problem and
join the method with ML-KNN modi�cations. We show on real data how the
new algorithms perform better than ML-KNN.

The rest of this work is organised as follows: in section 2 we formally de�ne
what a classi�cation problem is. We show di�erent classi�cation measures for
multi-label classi�cation and specify a measure for hierarchical classi�cation.
In section 3 we review literature on multi-label and hierarchical classi�cation.
Section 4 contains a detailed description of ML-KNN algorithm. We show a
problem, which might occur when working with noisy data using this algorithm.
We propose and describe novel modi�cations of ML-KNN which are not prone
to this speci�c problem. Section 5 describes the data, on which we tested our
algorithms. Section 6 shows what experimental settings have been taken, whereas
section 7 contains the results for the data. We �nish our work with summary
and propositions of future work which might improve the algorithms.

2 Problem statement

In this section we formalize a classi�cation problem of documents. We consider
an example of such problem in section 5.

2.1 Classi�cation problem

In the classi�cation problem of scienti�c documents a set of documents D is
considered. Furthermore, k attribute functions are de�ned, each mapping a doc-
ument into a value from a domain speci�c for an attribute:

∀i∈1,··· ,k : ai : D → Dai (1)

Let Q = {q1, · · · , qn} be the set of n labels describing documents from set D.
We can then specify a function K : D ×Q→ {0, 1}, such that K(d, q) = 1⇔ q
describes document d. Let K(d) be the set of labels describing d.

The solution to the classi�cation problem is, based on some �nite set of
training documents Dtrain ⊂ D, creating a function K ′ : D×Q→ {0, 1}, which
is as similar to K as possible.

2.2 Evaluation

Testing is evaluating, how similar function K ′ is to K. It is based on comparing
values K ′(d) and K(d) returned for documents d from some set of documents
Dtest ⊂ D.

Di�erent approaches to evaluation exist in the literature. It is worth noting,
that many labels may be assigned to a single document, which brings even
more complexity to the problem. We have shown some of the existing evaluation
methods below [3].

Accuracy(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

|K(dtest) ∩K ′(dtest)|
|K(dtest) ∪K ′(dtest)|

(2)

Accuracy measures classi�cation quality, not distinguishing the errors result-
ing from choosing too many labels from errors resulting from not choosing the
label that should be chosen.

Let P and R (de�ned by equations: (3) and (4)) be: Precision and Recall
evaluated for a document. Precision measures the percentage of correct decisions
made by a classi�er. Recall measures what percentage of documents that describe
the document has been chosen.

P (K,K ′, dtest) =
|K(dtest) ∩K ′(dtest)|

|K ′(dtest)|
(3)

R(K,K ′, dtest) =
|K(dtest) ∩K ′(dtest)|

|K(dtest)|
(4)

Based on P and R, analogous variables can be speci�ed for the whole data
set: these are the arithmetic means of measures calculated for single documents
(equations: (5) and (6)).

Precision(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

P (K,K ′, dtest) (5)

Recall(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

R(K,K ′, dtest) (6)

F-measure is a popular classi�cation measure, which deals with a problem of
imbalanced label representation. F-measure for a single document is de�ned as
a harmonic mean of Precision and Recall. In equation (7) F-measure is de�ned
as an arithmetic mean of such variables calculated for each of the documents.

F -measure(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

2
P (K,K ′, dtest)R(K,K ′, dtest)

P (K,K ′, dtest) +R(K,K ′, dtest)

(7)
The last 2 measures we list show how much error is in the classi�cation.

Hamming Loss (8) returns number of labels, for which wrong answer has been
returned as for it describing a document, averaged over all documents.

Hamming-loss(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

|(K(dtest)−K ′(dtest)) ∪ (K ′(dtest)−K(dtest))|
|Q|

(8)
Subset Zero-One loss (9) returns amount of documents for which at least one

error has been made in the classi�cation process.

Zero-One-loss(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

K(dtest) 6= K(dtest) (9)

2.3 Label dependencies

In the classi�cation problem dependencies amongst the labels may be de�ned.
We can specify them by the relation: R ⊂ Q×Q. An example of such a relation
is as follows: q1Rq2 ⇔ q1 is a sub-category of q2. In such a case, labels with
their dependencies form a graph. In general, each label may have a few parental
labels. When adding a constraint that each label can have only one parental
node, categories form a tree. Only the case of a balanced tree will be considered
in this paper.

In a problem stated in such a way one of 2 possibilities can occur. The �rst
possibility is that each of the labels assigned has to be a leaf node in a category
tree. The second possibility is the opposite. In this paper we will consider the
�rst option.

In the literature, many approaches to evaluating hierarchical classi�ers exist.
The common idea behind most of the evaluation methods is that the closer the
labels in the category graph are, the less punishment in the evaluation process
they should bring when the mistake is made for the other label. There is no
established method for hierarchical evaluation yet [4].

In this paper, we evaluate the classi�er by comparing the functions K and
K ′ in the following way: for each height h of nodes in the tree of labels (where
maximum height is taken by the leaves, and minimum value of 0 by the root)
project all the leaf nodes to their ancestor nodes of height h. Such projected
labels can be compared in the traditional way, for example using F-measure. We
will receive as many results as there are levels in the tree. Because we consider
only the case of balanced tree, where only leaf nodes are assigned, we will not
encounter a problem that an assigned label does not have an ancestor node of
given height.

3 Previous work

In this section we review methods for solving multi-label and hierarchical clas-
si�cation problem.

3.1 Multi-label classi�cation

Multi-label classi�cation methods can be divided into 2 groups: problem trans-
formation methods and algorithm adaptation methods. Problem transformation
methods are algorithms that decompose a multi-label problem into one or more
single-label problems. Algorithm adaptation methods are about extending an
established single-label algorithm to deal with multiple labels.

Problem Transformation Methods One of the simple approaches to the
multi-label classi�cation is creating a single-label classi�er for each label, which
discriminates between a label and all the other labels. There are |Q| classi�ers,

each of which is trained on the whole data set. At the classi�cation time each
classi�er answers whether a given label should be assigned to an object.

Another approach is training |Q|2−|Q| classi�ers, which distinguish between
all pair of labels q1 and q2. Set of positive samples consists of those objects
to which label q1 has been assigned whereas set of negative samples contains
only objects with label q2 assigned. There is therefore much more classi�ers to
be trained and less training examples for each of them, comparing to previous
approach.

It is worth noting that each of the methods listed above assumes indepen-
dence between labels. What seems an appropriate approach to multi-label classi-
�cation, which does not make such an assumption is creating a new set of labels
Q′, which contains the power set of set Q. The problems with this approach are:
small number of training samples for each of the new categories and exponential
number of new labels.

Read et al describe a method called classi�er chains in [5], which assigns
labels one after another, at each step using information about labels assigned
this far. A problem how to determine the order of labels is solved by randomly
choosing several options.

Zhang proposes in [6] an algorithm based on creating a Bayesian network,
which models dependencies between the labels. Information about the dependen-
cies is fetched from correlations between errors given by single-label classi�ers.

Algorithm Adaptation Methods There are various algorithm adaptation
methods for multi-label classi�cation. Clare and King described in [7] a mod-
i�cation of a C4.5 algorithm, with appropriately modi�ed formula for entropy
calculation.

There exist modi�cations of Ada-Boost approach that allow multi-label clas-
si�cation, that are not transformation based [8]. The idea is very similar to the
idea behind basic Ada-Boost approach.

A popular approach in Multi-label classi�cation based on algorithm adapta-
tion is Multi-label KNN, introduced in [9]. It is a Bayesian classi�er based on
distance features, calculated on neighbours from the training set. The classi�er
is described in more details in next section.

3.2 Hierarchical classi�cation

In case, when labels form a tree, use of the information about the dependencies
might increase the e�ciency of a classi�er. There exist various approaches to
how to use such information [10] [4].

First approach is the �at method, which is about ignoring the hierarchical
dependencies and just using some standard classi�cation algorithm.

Another approach is dividing nodes by their distance from the root. Each set
of nodes is then treated as a separate �at classi�cation problem.

The most popular approach is creating one classi�er per node of a label
tree [10]. Each of the classi�ers is trained on appropriately narrowed data set.

There are di�erent subclasses of this approach. There might be a single-label
classi�er in each node, returning a truth value whenever a class describes a
given object. There might also be multi-label classi�ers in each parental node.
In such approach a classi�er can choose multiple labels from node's children.

The last category of hierarchical classi�cation listed in [10] is the Big-Bang
approach. It is about training one single classi�er for the whole hierarchy, which
is somehow built in the algorithm. The arguments for using such an approach are
savings in time and space complexity. There has not been made much research
about such kind of classi�ers [10]. An example of the Big-Bang approach is to cast
the hierarchical classi�cation into a multi-label problem, saving the information
about the hierarchy by adding the labels that are parents of those describing
objects [11]. The post-processing step enforces consistency with the hierarchy.

4 ML-KNN

ML-KNN (Multi-Label KNN)[9] is a popular multi-label classi�cation algorithm
[3]. It uses 2 popular approaches to classi�cation [12]: Naive Bayes and KNN.

Naive Bayes is an algorithm, which is popular because of its e�ciency: in
case of simple features it uses only linear time for training.

KNN is an algorithm, which achieves e�ciency close to the best classi�ers. In
case of problems, for which Bayes Error Rate equals 0, 1NN algorithm converges
to the optimal classi�er as the training data becomes larger [12].

It is worth noting, that already in 1998 Joachims noticed some serious argu-
ments for using SVM for text classi�cation [13]. However, SVM depends heavily
on solving a quadratic programming problem, which makes it a computationally
demanding task. At the same time, KNN-based algorithms can be e�ciently im-
plemented, for example using k-d trees. When working with big text corpora it is
therefore worth considering more e�cient methods than SVM, such as ML-KNN.

In this section we describe in detail ML-KNN algorithm and inspect its na-
ture. We point at a possible problem when working with ML-KNN on real data.
We deal with this problem, developing novel modi�cations of ML-KNN that do
not increase asymptotic time complexity.

4.1 Basic algorithm

Let us use the notation de�ned in section 2 and moreover let us de�ne:

� Sx - neighbourhood of object x, e.g. its k nearest neighbours (where k is
earlier de�ned)

� Sx(q) - number of occurrences of label q ∈ Q amongst the objects from Sx

Let Hq be an event, that a given object belongs to class q, and let ¬Hq be
the opposite event. Let ESx(q) be an event, that an object has Sx(q) neighbours
belonging to class q.

Category q is being assigned to a given object, if P (Hq|ESx(q)) > P (¬Hq|ESx(q)).
Bayes theorem states, that this inequality is equivalent to the following:

P (ESx(q)|Hq)P (Hq) > P (ESx(q)|¬Hq)P (¬Hq) (10)

It is possible to estimate variables from the inequality (10) using the training
set.

The training algorithm for ML-KNN is shown in listing: Algorithm 1 (D is the
training set, m is its size, K is the known classi�cation of the training objects, k is
the neighbourhood size, s is the smoothing parameter). The algorithm works as
follows. First, the a-priori probabilities for each label occurrence are calculated.
This is performed by calculating occurrences of categories in the training set.

Next, in the double-nested loop, values c[q][i] are calculated. They denote,
how many times the following situation occurs: object belonging to class q has
exactly i neighbours, which belong to class q. Similarly, c′[q][i] can be evaluated.
They correspond to situations, when object not belonging to class q has exactly
i neighbours belonging to class q.

In the end, the posterior probabilities are calculated using values from arrays
c and c′.

Algorithm 1 ML-KNN(D,m,K, k, s)

1: Initialize 2-dimensional arrays c and c′, both of size |Q| × k
2: for q ∈ Q do

3: P (Hq) =
s+

∑
x∈D K(x,q)

2s+m

4: P (¬Hq) = 1− P (Hq)
5: end for

6: for x ∈ D do

7: Sx = �nd k nearest objects to x in the training set
8: for q ∈ Q do

9: i = how many times class q occurs among objects in Sx

10: if K(x, q) then
11: increment c[q][i]
12: else

13: increment c′[q][i]
14: end if

15: end for

16: end for

17: for q ∈ Q do

18: for i ∈ 0..k do

19: P (Ei|Hq) =
s+c[q][i]

s(k+1)+
∑

p∈{0..K} c[q][p]

20: P (Ei|¬Hq) =
s+c′[q][i]

s(k+1)+
∑

p∈{0..K} c′[q][p]

21: end for

22: end for

23: return estimated probabilities

Classi�cation of an object is implemented as the inequality (10) de�nes.

Each category is considered separately. Therefore, label independence is as-
sumed.

It can be noticed, that when smoothing parameter s equals 0, the algorithm
is equivalent to comparing counts c[q][i] and c′[q][i] for given i and choosing class
q i� c[q][i] > c′[q][i]. This can be shown by the following series of equivalent
inequalities:

P (ESx(q)|Hq)P (Hq) > P (ESx(q)|¬Hq)P (¬Hq) (11)

c[q][Sx(q)]∑
p∈{0..K} c[q][p]

∑
p∈{0..K} c[q][p]

m
>

c′[q][Sx(q)]∑
p∈{0..K} c

′[q][p]

∑
p∈{0..K} c

′[q][p]

m
(12)

c[q][Sx(q)] > c′[q][Sx(q)] (13)

4.2 Threshold ML-KNN

Let us consider the following situation: 2 objects x1 and x2 are given for clas-
si�cation and the following inequality holds for them: Sx1

(q) < Sx2
(q) for

some label q. In such case, ML-KNN algorithm allows the following to hap-
pen: P (Hq|ESx1 (q)

) > P (¬Hq|ESx1 (q)
) and at the same time P (Hq|ESx2 (q)

) <
P (¬Hq|ESx2

(q)). Example of data, where such a situation should be allowable is
shown in �gure 1. Nevertheless, intuitively such a situation corresponds to noise.
Therefore, it seems reasonable to consider a modi�cation of ML-KNN, which
does not allow such a situation to happen.

Fig. 1. An example, where situation described should be allowable. When considering
neighbourhood of size 4, each of the circles has only 3 neighbouring circles, whereas
the square has 4 neighbouring circles.

In order to achieve this, we propose the following modi�cation. Instead of
estimating the probabilities shown in inequality (10), threshold number of neigh-
bours p can be chosen for each category, such that K(x, q) = 1⇔ Sx(q) > p. In

the training data it is possible that such a value does not exist. Common situa-
tion is such as shown in table 1. It shows, that in almost all cells non-zero value
exists. Nevertheless, intuitively the threshold in the case of data shown in table
1 should be chosen for p=1, because ∀t>1 : c[l] > c′[l] and ∀t≤1 : c[l] ≤ c′[l]. It is
less obvious, what the threshold should be like in case of data shown in table 2,
because: c[1] < c′[1], c[2] > c′[2], c[3] < c′[3] and c[4] > c′[4].

Table 1. Example table with counts for category q.

neighbours
count

c c'

0 0 100

1 20 40

2 30 24

3 10 8

4 8 1

Table 2. Example table with counts for category q: complicated situation.

neighbours
count

c c'

0 0 100

1 20 40

2 30 21

3 10 14

4 8 1

We propose to choose threshold by maximizing the F-measure. Let us use
the following notation:

� FN (false negatives), number of objects incorrectly classi�ed as not belonging
to class q. These are the samples incrementing the count c[q][i] for i ≤ p.

� TP - (true positives), number of objects correctly classi�ed as belonging to
class q. These are the samples incrementing the count c[q][i] for i > p.

� TN - (true negatives), number of objects correctly classi�ed as not belonging
to class q. These are the samples incrementing the count c'[q][i] for i ≤ p.

� FP - (false positives), number of objects incorrectly classi�ed as belonging
to class q. These are the samples incrementing the count c'[q][i] for i > p.

Now, threshold p can be chosen in such a way, that F-measure is maximized.
F-measure is calculated using the following formula:

F1 =
2PR

P +R
(14)

In the formula (14), P means precision and R means recall. They are calcu-
lated in the following way: P = TP

TP+FP , R = TP
TP+FN .

Complete training algorithm for Threshold ML-KNN is shown in listing:
Algorithm 2. The agorithm works as follows. In lines 3 - 13 counts c and c′ are
calculated in a similar way as in case of ML-KNN. Next, for each category q a
value for a threshold maximizing F-measure value is being chosen. An array of
such values is returned.

Algorithm 2 THRESHOLD-ML-KNN(D,K, k, s)

1: Initialize 2-dimensional arrays c and c′, both of size |Q| × k
2: Initialize 1-dimensional array p of size |Q| and �oating point variable bestf1
3: for x ∈ D do

4: Sx = �nd k nearest objects to x in the training set
5: for q ∈ Q do

6: i = how many times class q occurs among objects in Sx

7: if K(x, q) then
8: increment c[q][i]
9: else

10: increment c′[q][i]
11: end if

12: end for

13: end for

14: for q ∈ Q do

15: p[q] = −1
16: bestf1 = −1
17: for i ∈ 0..k do

18: FN =
∑

l∈{0,··· ,i−1} c[q][l]

19: TP =
∑

l∈{i,···k} c[q][l]

20: TN =
∑

l∈{0,··· ,i−1} c
′[q][l]

21: FP =
∑

l∈{i,···k} c
′[q][l]

22: F1 = Calculate F-measure based on FN, TP, TN and FP
23: if F1 > bestf1 then
24: p[q] = i
25: bestf1 = F1
26: end if

27: end for

28: end for

29: return p

4.3 Ensemble Threshold ML-KNN

Choice of value for parameter k is a problem that appears each time a KNN
based algorithm is used. The way how Threshold ML-KNN has been de�ned
allows to cope with the problem, by using di�erent values at the same time.
A few Threshold ML-KNN classi�ers may be constructed simultaneously, not
making the asymptotic time complexity larger.

Algorithm 3 ENSEMBLE-OF-THRESHOLD-ML-KNN(D,K, k-list, s)

1: Initialize 3-dimensional arrays c and c′, both of size k × |Q| × k
2: Initialize 2-dimensional arrays p and bestf1, both of size k × |Q|
3: for x ∈ D do

4: Sx = �nd max(k-list) nearest objects to x in the training set
5: for q ∈ Q do

6: for j ∈ k-list do
7: i = how many times class q occurs among �rst j objects from Sx

8: if K(x, q) then
9: increment c[j][q][i]
10: else

11: increment c′[j][q][i]
12: end if

13: end for

14: end for

15: end for

16: for j ∈ k-list do
17: for q ∈ Q do

18: p[j][q] = −1
19: bestf1[j][q] = −1
20: for i ∈ 0..j do
21: FN =

∑
l∈{0,··· ,i−1} c[j][q][l]

22: TP =
∑

l∈{i,···j} c[j][q][l]

23: TN =
∑

l∈{0,··· ,i−1} c
′[j][q][l]

24: FP =
∑

l∈{i,···j} c
′[j][q][l]

25: F1 = Calculate F-measure based on FN, TP, TN and FP
26: if F1 > bestf1[j][q] then
27: p[j][q] = i
28: bestf1[j][q] = F1
29: end if

30: end for

31: end for

32: end for

33: return p, bestf1

Let us assume we have a list of natural numbers k-list = [k1, k2, · · · , kn] and
that we can �nd k nearest neighbours in sorted order, which allows to quickly
take j nearest neighbours out of them, for k > j. In such case, it is enough to
�nd a number of max(k-list) nearest neighbours once in order to calculate the
parameters needed to train an ensemble of Threshold ML-KNN classi�ers.

After the training process, it is possible to use di�erent Threshold ML-KNN's
in the voting process. We propose to use the estimated F-measure values to
choose the best Threshold ML-KNN for each class.

It is important, that there exists danger of over-�tting - such a classi�er
has more dimensions in the training process, which makes it more vulnerable to
changes in the form of training data.

In the listing: Algorithm 3 the training algorithm for Ensemble Threshold
ML-KNN is shown. First, counts c and c′ are calculated. After calculations,
c[j][q][i] shows how many times occurs the following situation: object belonging
to class q has exactly i neighbours out of the closest j neighbours, which belong to
class q. On the other hand, c′[j][q][i] shows how many times object not belonging
to class q has exactly i neighbours out of the closest j neighbours, which belong
to class q.

Next, arrays p and bestf1 are calculated. After calculations, p[j][q] shows,
what minimum number of neighbours out of the closest j neighbours should be
in class q in order to assign class q to an object. bestf1[j][q] shows what F-
measure value has been achieved for such threshold. Based on these arrays the
best value kq ∈ k-list in terms of achieved F-measure can be chosen for each
class q.

5 Data description

In this section we describe data on which we evaluated algorithms described in
previous sections. The classi�cation task has been evaluated on Springer data1,
which has been made available to the ICM2.

5.1 General description

The data made available consisted of 1342882 records, describing consecutive
scienti�c papers. Each of the records has been described by meta-data such as:
list of authors, title, abstract, keywords. The full list of �elds has been shown in
table 3.

Each record is described by a list of labels. There are di�erent categorization
systems in the data, such as: MSC3, PACS4 (Physics and Astronomy Classi-
�cation Scheme) etc. In table 4 we show basic information about how each
categorization system exists in the data.

The categories are very rare in the corpus. Therefore, in the evaluation pro-
cess we consider MSC only.

5.2 MSC codes

MSC (Mathematics Subject Classi�cation) is the classi�cation system for docu-
ments on mathematics. It consists of more than 5000 categories, each represented
by a string of 2, 3 or 5 characters. Each document can be described using more
than one category (in such case, the �rst category is considered as most im-
portant). Categories form a hierarchy, in which each category represented by a

1 http://www.springer.com/
2 http://www.icm.edu.pl/
3 http://www.ams.org/mathscinet/msc/msc2010.html
4 http://publish.aps.org/PACS

Table 3. Fields describing the records.

Field Description

an Unique identi�er.

py Publication year.

ti Title.

ut Keywords.

ab Abstract. Consisting of 1-4 short sentences describing the paper.

au List of authors.

jy Year of journal publication.

mc MSC classi�cation tags.

jp Journal publisher.

ps Page numbers in the journal.

jt Journal title.

uv A�liations of authors.

vl Volume of a journal.

jc ISSN number of a journal.

Table 4. Statistics about various categorization systems in the corpus.

Categorization No. of documents No. of occurrences No. of distinct codes

ZDM 297 783 125

PACS 13715 38639 3970

CLC 8536 8536 2495

QICS 37 66 40

MSC 20275 54410 5130

JEL 7927 22349 860

string of 2 or 3 characters is divided into subcategories. In picture 2 we show part
of the MSC tree. Each node corresponds to some �eld of mathematics. In the
example shown, 60 corresponds to probability theory and stochastic processes,
60E to distribution theory, and 60E15 to inequalities and stochastic orderings.

5.3 Analysis of record content

In the meta-data there are many �elds containing various information concerning
the publications. It seems that some introduce relevant information (such as
keywords and title) and some don't (such as page numbers).

It can be stated, that the most important �elds are textual ones: title, ab-
stract and keywords. List of authors can also contain relevant information, since
if a person published in some �eld, then it is very possible that he or she is still
going to work on it.

In table 5 we showed how many records contain all �elds from given sets.
We excluded �elds, which do not seem to introduce important information for
choosing the topic of a paper.

Fig. 2. Part of an MSC category tree.

After counting the �elds it can be noticed, that number of records containing
all the textual information (title, abstract and keywords) is not much smaller
then number of records containing MSC codes.

Table 5. Number of records containing subsets of �elds.

ab 1105609

au 1289023

jt 14959

mc 20275

py 1342065

ti 1281409

ut 851240

ab au mc py ti 20155

ab au mc py ut 17977

ab au mc ti ut 17959

au mc py ti ut 18017

au jt mc py ti ut 470

ab au jt mc py ti 502

ab au jt mc py ut 468

ab au jt mc ti ut 468

ab au mc py ti ut 17959

ab jt mc py ti ut 468

ab au jt mc py ti ut 468

ab au jt mc py ti ut 468

5.4 Data �ltering

In picture 3 we show a histogram showing number of codes with consecutive
occurrence numbers. It can be noticed, that there is a big number of codes with

very few occurrences. Training a classi�er with such small number of training
samples is a very hard task.

Fig. 3. Number of MSC codes of a given number of occurrences in the corpus before
�ltering.

Because of low number of occurrences of some codes, we performed data
�ltering. We left only these codes, which appeared at least 30 times and at the
same time have not been the only subcategory of their parental category. The
criterion has been applied recursively to codes of 2nd and 3d level. As a result,
some codes have been left without any labels, therefore they have been removed
from the corpus. Finally, 240 di�erent codes for the bottom level remained. We
got 9180 records.

5.5 How multi-label and how hierarchical data is

Tsoumakas in [3] describes measures which describe, how multi-label data is:
label cardinality and label density.

Label cardinality shows, how many labels on average are being assigned to a
record. In our case the value is 1.56.

Label density describes, what part of all the labels is on average assigned to
a document. The value for the data is 0.65%.

The corpus can also be described by measures describing, how hierarchical
it is. In table 6 we showed in how many documents there are at least 2 similar
codes (similar in the hierarchical sense) and at least 2 di�erent codes.

Table 6. The percentage amount of records with at least 2 similar (di�erent) codes.
The criterion for similarity is being subcategory of the same category.

Property Percentage

Contains at least 2 sub-codes of the same highest
level category

35.39%

Contains at least 2 sub-codes of di�erent highest
level categories

13.66%

Contains at least 2 sub-codes of the same 2nd level
category

29.59%

Contains at least 2 sub-codes of di�erent 2nd level
categories

24.78%

6 Experimental settings

We decided to use only textual �elds in the experiments. We joined keywords,
title and abstract of each record to form single text describing each document.
We removed stop words and projected words to their base forms using Porter
stemmer. We then performed a popular text analysis technique called TF-IDF
[12]. This way, we got vectors of numbers describing each document.

In each algorithm, we used cosine distance, which is a good measure to dis-
tinguish between high dimensional objects, such as texts described by TF-IDF
vectors [12].

As for ML-KNN algorithms, we used the following settings for the parame-
ters:

� smoothing parameter (s): 1
� k parameter: 5
� k list parameter: [3, 5, 8]

As was the case in [9], we also noticed, that value for parameter k does not
in�uence the relative performance of the algorithms.

7 Experimental results

In this section we show results for classi�ers described earlier.
We have evaluated the following classi�ers: ML-KNN, Threshold ML-KNN

and Ensemble Threshold ML-KNN, where the 2 latter algorithms are our mod-
i�cations of ML-KNN algorithm (they have been described in section 4).

Furthermore, we have evaluated modi�cations, where we put each of the 3
listed classi�ers into parental nodes of the hierarchical structure of labels. This
is one of the most popular approaches to hierarchical classi�cation, as stated in
section 3. We list tested algorithms in table 7.

The evaluation has been performed on data described in section 5, prepared
as stated in section 6. 5-fold cross validation has been used to estimate e�ciency
of classi�ers.

Table 7. Evaluated classi�ers. We separately test �at approaches and hierarchical ap-
proaches. Novel methods that have been proposed in this paper have been highlighted.

Approach Base Algorithm Modi�cation Ensemble Modi�cation

Flat ML-KNN Threshold ML-KNN Ensemble Threshold
ML-KNN

Hierarchical Hierarchical ML-KNN Hierarchical Threshold
ML-KNN

Hierarchical Ensemble
Threshold ML-KNN

Table 8. Evaluation measures for results projected to the 1st level of labels.

Classi�er Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 21.30% 23.08% 21.35% 21.90% 0.38% 80.49%

Threshold ML-KNN 44.36% 47.48% 45.23% 45.68% 0.30% 59.55%

Ensemble Threshold ML-
KNN

63.33% 66.59% 72.38% 67.43% 0.29% 48.59%

Hierarchical ML-KNN 44.62% 48.09% 45.91% 46.20% 0.32% 60.03%

Hierarchical Thresh. ML-
KNN

50.95% 54.73% 51.75% 52.47% 0.28% 53.55%

Hierarchical Ens. Thresh.
ML-KNN

66.59% 70.66% 71.33% 69.54% 0.25% 42.06%

Table 9. Evaluation measures for results projected to the 2nd level of labels.

Classi�er Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 18.40% 21.52% 18.51% 19.44% 0.45% 84.59%

Threshold ML-KNN 36.49% 41.76% 37.85% 38.67% 0.40% 69.72%

Ensemble Threshold ML-
KNN

49.42% 54.19% 61.72% 55.14% 0.49% 66.44%

Hierarchical ML-KNN 35.27% 40.69% 37.38% 37.76% 0.44% 71.78%

Hierarchical Thresh. ML-
KNN

40.91% 46.95% 42.78% 43.53% 0.41% 66.59%

Hierarchical Ens. Thresh.
ML-KNN

51.83% 57.57% 61.75% 57.00% 0.46% 62.41%

Table 10. Evaluation measures for results directly on leaf nodes.

Classi�er Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 13.83% 18.87% 14.03% 15.45% 0.59% 90.61%

Threshold ML-KNN 25.12% 32.60% 27.71% 28.43% 0.60% 83.92%

Ensemble Threshold ML-
KNN

31.74% 37.14% 46.55% 38.56% 0.84% 85.82%

Hierarchical ML-KNN 24.78% 32.63% 27.11% 28.04% 0.63% 84.03%

Hierarchical Thresh. ML-
KNN

26.60% 34.32% 30.39% 30.45% 0.66% 83.82%

Hierarchical Ens. Thresh.
ML-KNN

31.94% 37.37% 48.62% 38.92% 0.96% 85.34%

We used measures described in section 2.2. Furthermore, we used method for
evaluating hierarchical classi�cation problems, described in section 2.3.

Results for each consecutive level of the label tree are shown in tables: 8, 9, 10.
By separately comparing the �at approaches and the hierarchical approaches we
can notice, that proposed modi�cations give better results than basic ML-KNN
algorithm.

8 Future work

There are many directions, in which our work can be improved. We listed some
of the possibilities below.

� In our work, we assumed a bag of words model, which in turn assumes
independence between the words. What can be done to improve this is to
try extracting semantic information from the text.

� We excluded non-textual attributes from data. It seems that information
about authors can be very useful to categorize documents.

� We used TF-IDF algorithm to generate weights. There exist other algorithms
(such as LSA or LDA), which may improve the results.

� The most popular approach to deal with the hierarchical structure between
the labels has been chosen. One can try other solutions.

� We narrowed our work to a single algorithm (ML-KNN). We could try use
other approaches and join them with our algorithms. For example we could
form a hierarchy of di�erent classi�ers, where our algorithm deals with the
�rst classi�cation step, and more di�cult situations to decide are delegated
to more e�ective classi�ers (such as SVM),

� Evaluating hierarchical classi�cation is not a trivial problem and it can be
further explored.

9 Summary

In this paper we dealt with multi-label hierarchical classi�cation problem of
documents. We chose to work on ML-KNN and supported our decision with the
e�ciency of this algorithm. Analysis of the classi�cation has been performed. It
turns out, that when there is a speci�c type of noise in the data, the algorithm
�ts to it too much. We proposed modi�cations of ML-KNN, which help to deal
with such noise.

The problem has been noticed when working on the data, on which the
algorithms have been evaluated. It turns out, that a situation, where document's
neighbourhood is not very stable is not rare. The algorithm's ability to learn
about such instabilities causes degradation in classi�cation.

What is worth mentioning is that our modi�cations, apart from giving bet-
ter results, sustain low computational cost of the algorithm. This is important,
because as we pointed out earlier, this is one of the biggest strengths of this
approach.

10 Implementation in the YADDA2 architecture

Results of research presented in this paper are currently implemented as a mod-
ule in the SYNAT system. SYNAT is a strategic project commissioned by the
Polish National Centre for Research and Development, with the goal of building
�Interdisciplinary System for Interactive Scienti�c and Scienti�c Technical In-
formation.� YADDA2 framework, developed at ICM UW, is a core part of that
system.

YADDA2 [14] has a two-tier architecture, with base services tier providing
generic fuctionalities independent of the type of content being processed, and
application tier where business logic and user interfaces are located. YADDA2
facilitates creation of several types of products:

� stand-alone repositories with a web front-end and a publication application
in the back-end;

� repository federations containing multiple autonomous collections, accessed
through a central front-end;

� publication data warehouses aggregating content from multiple repositories
in order to provide long-term preservation of data and access for researchers
and analysts.

Several con�gurable components are already implemented and are ready to be
used, for example: meta-data and content storage, full-text indexing, batch pro-
cessing engine, relational index, user annotation service. Results of this research
are being implemented as yet another reusable module, providing hierarchical,
multi-label classi�cation tailored for scholarly publications.

The classi�cation module is intended to be part of back-end work-�ows for
improving meta-data quality and enriching it with inferred information. In a
typical setting, one back-end process fetches from a storage all the documents

that are already classi�ed using codes from a given classi�cation scheme, passes
them to the module in question in order to train it and places results of the
training in a storage. Another back-end process fetches all documents from a
given domain lacking codes from a given classi�cation scheme, pipes them to the
module for classi�cation (con�gured to use the results of an earlier training) and
updates document meta-data using output from the classi�er.

11 Acknowledgements

This work is supported by the National Centre for Research and Development
(NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scienti�c research
and experimental development program: "Interdisciplinary System for Interac-
tive Scienti�c and Scientic-Technical Information."

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (March 2002) 1�47

2. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combin-
ing lexical knowledge with text classi�cation. In: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD
'09, New York, NY, USA, ACM (2009) 1275�1284

3. Tsoumakas, G., Katakis, I.: Multi-label classi�cation: An overview. IJDWM 3(3)
(2007) 1�13

4. Costa, E., Lorena, A., Carvalho, A., Freitas, A.: A review of performance evaluation
measures for hierarchical classi�ers. In Drummond, C., Elazmeh, W., Japkowicz,
N., Macskassy, S., eds.: Evaluation Methods for Machine Learning II: papers from
the AAAI-2007 Workshop, AAAI Technical Report WS-07-05, AAAI Press (July
2007) 1�6

5. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classi�er chains for multi-label
classi�cation. In: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases: Part II. ECML PKDD '09, Berlin, Hei-
delberg, Springer-Verlag (2009) 254�269

6. Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency. In:
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD '10, New York, NY, USA, ACM (2010) 999�1008

7. Clare, A., Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype
data. In: In: Lecture Notes in Computer Science, Springer (2001) 42�53

8. Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class adaboost. Technical report
(2005)

9. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition 40(7) (2007) 2038�2048

10. Silla, C., Freitas, A.: A survey of hierarchical classi�cation across di�erent ap-
plication domains. Data Mining and Knowledge Discovery 22 (2011) 31�72
10.1007/s10618-010-0175-9.

11. Kiritchenko, S., Matwin, S., Nock, R., Famili, A.F.: Learning and evaluation in the
presence of class hierarchies: application to text categorization. In: Proceedings

of the 19th international conference on Advances in Arti�cial Intelligence: Cana-
dian Society for Computational Studies of Intelligence. AI'06, Berlin, Heidelberg,
Springer-Verlag (2006) 395�406

12. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2009)

13. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In Nédellec, C., Rouveirol, C., eds.: Proceedings of ECML-
98, 10th European Conference on Machine Learning, Heidelberg et al., Springer
(1998) 137�142

14. Sylwestrzak, W., Rosiek, T., Bolikowski, L.: YADDA2 � Assemble Your Own Digi-
tal Library Application from Lego Bricks. In: Proceedings of the 2012 ACM/IEEE
Joint Conference on Digital Libraries. (2012)

