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Abstract—We present ant colony optimisation approach, en-
riched with a novel self-adaptation mechanism, applied to solve
DIVERSUM Problem that consits of generating a small diversi-
fied entity summarisation in a knowledge graph. The recently
proposed DIVERSUM problem is viewed in this paper in a
novel way as a NP-hard combinatorial optimisation problem. The
presented preliminary experimental results indicate superiority
of this approach to the previously proposed solutions to the
DIVERSUM problem.

Index Terms—Ant Colony Optimisation, Diversified Entity
Summarisation, Max Sum Dispersion, Semantic Knowledge
Graphs

I. INTRODUCTION

T
RADITIONAL optimisation techniques and optimisation

methods are related to different types of problems. Some

of them deal with constraint handling by using penalty meth-

ods, however, they often get stuck in local optima. Moreover,

they usually need knowledge of first/second order derivatives

of objective functions and constraints.

Hence one looks for more sophisticated methods, especially

in cases when: Search space is discrete, discontinuous, non-

convex, etc. or objective functions and constraints are non-

differentiable or computationally expensive.

If we look at the branch of computer science, called compu-

tational intelligence then we find here 3 main divisions: nature

inspired algorithms, fuzzy logic systems, neural networks.

In the last quarter of the previous century a dozen or more

different optimisation algorithms have been proposed that are

nature-based methods. One can list some of them: genetic, or

more general – evolutionary algorithms, that are based on the

Darwin’s theory of evolution, swarm optimisation techniques,

that copy the swarm intelligence, and they include: ant colony

systems, particle swarm optimisation; and simulated annealing

methods, that is based on the process of steel production;

generalised extremal optimisation, that is based on point-wise

equilibrium phenomenon, [1], in which the evolution happens

step-wise in contrast to the Darwin continuous evolution, and

many more methods.

In this paper we present application of the Ant Colony Op-

timisation (ACO) approach (Section II), to solve the DIVER-

SUM problem, i.e. a recently [2] introduced hard optimisation

problem of Diversified Entity Summarisation on Knowledge

Graphs (Section III). The DIVERSUM problem consists in

selecting a small set S of arcs incident to a node x in a

knowledge graph so that S gives a good “summary” of the node

x. In this paper we present a diversity-aware objective measure

so that the DIVERSUM problem is viewed as a combinatorial

optimisation problem that is NP-hard.

Then, we report preliminary experimental results (Section

IV) run on real data that illustrate the applicability of the

presented ACO optimisation technique on the DIVERSUM

problem and show that the peformance is higher compared

with some previous solutions to the problem.

Ant Colony Optimisation approach was described in [3] and

subsequently in a large number of publications. A more recent

examples are [4] and [5] where also its application to a hard

computational problem such as TSP was presented.

The problem of Diversified Entity Summarisation on

Knowledge Graphs has been recently described and studied in

[2]. In this paper, we study this problem from the optimisation

perspective as optimising a properly defined diversity-aware

objective function (Section III-C).

A. Contributions

The contributions of this paper include:

• novel self-adaptation mechanism for one of the param-

eters of ant colony optimisation algorithm, presented in

Section II-G

• formulating the DIVERSUM problem as a combinatorial

optimisation one, via defining a novel objective function

(Section III-C)

• application of ant colony optimisation approach to such

defined optimisation problem (Section III)

• promising preliminary experimental results on real data

(Section IV)
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II. ANT COLONY OPTIMISATION ALGORITHM

Ant System (AS), has been proposed by M. Dorigo in

1992, is a nature-based heuristic which tackles a range class

of the real-life optimisation problems by information coop-

eration (i.e. pheromone trials evolution) inside a set A =
{a1,a2, . . . ,am} of m≥ 1 abstract agents called ants.

AS algorithm is an iterative method in which the three main

rules are repeated sequentially:

• Neighbour Choosing Rule (AS-NCR) – which defines the

probability of adding a new element to the solution being

constructed,

• Solution Construction Rule (AS-SCR) – which stands for

a process of constructing a complete solution for an input

problem (AS-NCR is used inside),

• Pheromone Update Rule (AS-PUR) – which determines

how the ants exchanges local information to build a global

description of a space being under optimisation process.

One extra rule is often added, namely:

• Pheromone Evaporation Rule (AS-PER) – which defines

quantity of evaporation (loss) of global information writ-

ten down in pheromone trials.

Ant System heuristic schema:

while (stop condition is false) do

for every ant ai do

construct solution with AS-SCR (AS-NCR inside)

for every ant ai do

update pheromone trails with AS-PUR

evaporate pheromone trials with AS-PER

Let us list the main components of the Ant System.

A. Neighbour Choosing Rule

Neighbour Choosing Rule is based on the probability of

adding to constructed solution a new element x j, just after xi

is previously added, is equal to

pi, j =
(τi, j)

α (ηi, j)
β

∑
k∈Θ

(τi,k)
α (ηi,k)

β

where Θ is a set of indexes of all actually reachable elements

and:

• τi, j – is pheromone trail value connected with an action

of choosing element x j just after an element xi is chosen,

• ηi, j – is heuristic value connected with an action of

choosing element x j just after an element xi is chosen

(this coefficient is defined within an input problem),

• α, β – are parameters that control the relative weight

of pheromone trail and heuristic value; they need to be

adapted.

One of the results of our paper is to define and implement a

self-adaptation algorithm for the parameter α; here we assume

β = 0.

B. Pheromone Update Rule

In Pheromone Update Rule for ant ak the following action

is executed

τi, j← (1−ρ)τi, j +∆k

where ∆k is a value of fixed function of solution quality, and

the following Pheromone Evaporation Rule has been already

incorporated

τi, j← (1−ρ)τi, j

where ρ is a fixed evaporation coefficient.

In our paper we are generalise the Ant System in the form

of a Discrete Ant System. In its heuristic we face with a

collective work, performed by a discrete number of objects

and with the use of a discrete number of functions (tools),

that may possess only a discrete number of different values.

In this way the set of information collection by individuals

- ants in order to construct individual solutions by the use

of global knowledge of m ants from the set A, is finite, as

well. Now we define the optimisation problem for a simple

ant system.

By an optimisation problem we understand a given quadru-

ple (Σ,R ,∆,‖·‖), where:

• Σ = {x1,x2, . . . ,xn} – is a finite set of n indexed objects

(symbols),

• R ⊂ Σ∗ – is a finite set of r indexed solutions (words),

• ∆ : Σ∗→{0,1} – is a solution acceptance function such,

that

∆(ω) =

{
1, if ∃

(
ω
′
∈ Σ∗,ω

′′
∈ R

)(
ω◦ω

′
= ω

′′
)

0, in other case

• ‖·‖ : R → R+ ∪ {0} – is a solution quality function,

where we deal here with the minimisation problem for

the quality function.

Notice that this definition of the optimisation problem is

suitable for a wide range of real-world computation problems

including NP-hard combinatorial problems. For example in the

traveling salesman problem (TSP) the set Σ contains all labels

of vertices of the graph under consideration and R is the set of

all permutations of Σ. In a discrete knapsack problem, on the

other hand, Σ is the set of all objects to be put into knapsack,

while R is the set of words-solutions representing filling

methods of the knapsack, taking into account all combinations

and constrains put on the number of objects.

The solution ω∗ ∈ R is an optimal one if

∀(1≤ i≤ r)(‖ωi‖ ≥ ‖ω
∗‖)

Let R ∗⊂R denote the set of all optimal solutions. Our task in

the optimisation problem (Σ,R ,∆,‖·‖) is to find any optimal

solution ω∗ ∈ R ∗.
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C. Pheromone Trail: Basic Variant

The value of saturation of pheromone trail left by an ant is

upper bounded by τmax ∈ N+. We assume that

H= {1,2, . . . ,τmax}

is a set of possible values of saturation of pheromone trail.

Then F ∈ H
n is a column vector of size n, which defines

the saturation level of pheromone trail, where F [i] is a value

connected with an ant’s possibility of choosing an object xi.

Next

F = {F1,F2, . . . ,Ff}

is a finite set of all possible indexed vectors of saturation level.

Notice that

f= (τmax)
n

In our DAS algorithm we introduce a new object the matrix

H ∈Hn×n of size n×n, which determines the saturation level

of pheromone trail, where H [i, j] is a value connected with an

ant’s moving action from an object xi to an object x j. Thus

H = {H1,H2, . . . ,Hh}

is a finite set of all possible indexed matrices of saturation

level. Similarly

h= (τmax)
n2

D. Pheromone Trail – Probabilistic

Now let Ĥ be a set of discrete probabilistic values over

set H of all possible values of saturation of pheromone trail,

namely

Ĥ=
{a

b
: a ∈ {1,2, . . . ,τmax} ,b ∈ {1,2, . . . ,n · τmax}

}
.

where 0 < a
b
≤ 1. Then, we define the following reduction

function Ω for the column vectors of set F where F ×R ×
R+→ Ĥ

n and Ω(F,ω,α) = F̂ is a stochastic column vector,

that according to the rule

F̂ [i] =





F [i]α

∑
{ j:∆(ωx j)=1}

F [ j]α
if ∆(ωxi) = 1

0 in other case

, (1)

for α being a coefficient which describes an individual behav-

ior of a single ant.

E. Neighbour Choosing Rule

The action of Neighbour Choosing Rule is governed by

the nondeterministic function, called here NCR : F ×Σ∗→ Σ
which at given F ∈ F and actually constructed word σ ∈ Σ∗

assume values xi with the probability given by Eq.(1). It can

be formulated as follows:

Remark 1. For any column vector F ∈F and any word σ∈Σ∗

and arbitrary symbol x ∈ Σ the following takes place

Pr(NCR(F,σ) = x) ∈ (0,1) , if ∆(ωx) = 1 ,and (2)

Pr(NCR(F,σ) = x) = 0 in other cases .

This is the basis of the next nondeterministic evolution mech-

anism in DAS, related to the solution construction rule SCR,

where SCR : F ×H → R . This rule is the composition of

a sequence of independent events generated by a multiple

application of the mechanism NCR, unless an internal stop

condition is meet. In the reality after the initiation of the

algorithm and the formation of the first element of the word-

solution, according to the column vector F and

ω← NCR(F,ε) , (3)

at some i-th stage of the iteration process we obtain a word

ω = xl1 ,xl2 , ...,xli , say, then as the result of the li-th column

vector of the matrix H, denoted here by H[li, ·], we determine

the next element

xli+1
← NCR(H[li, ·],ω) (4)

with the probability given by the property of the rule NCR.

Then we add the next symbol xli+1 at the end of the word ω,

i.e.

ω← ωxli+1
. (5)

From this description we can formulate the following remark

concerning the probabilistic nature of SCR.

Remark 2. For any column vector F ∈ F , an arbitrary

matrix H ∈ H and a word-solution ω ∈ R of the form

ω = xl1 ,xl2 , ...,xlr , the following is true:

Pr(SCR(F,H) = ω) =

= Pr(NCR(F,ε) = xl1) ·
r−1

∏
i=1

Pr(NCR(H[li, ·],xl1 ,xl2 , ...,xli) ,

(6)

which means, by Remark 1, that

Pr(SCR(F,H) = ω) ∈ (0,1) . (7)

The last statement has a fundamental meaning for our nonde-

terministic algorithm: each word-solution ω ∈ R , and by this

each optimal word-solution from R ∗ ⊂ R may be obtained

with a positive probability, as a result of the application of

the SCR rule in an arbitrary pheromone structure F and H.

To these, rather static, mechanisms NCR and SCR we are

adding a dynamic one that is related with the actualisation of

the pheromone intensity on the trails, governed by the rule

PUR. In this way we are introducing a dynamic exchange of

information.

The PUR mechanism has two components: short range and

long range, and is deterministic. They act on elements of the

sets F and H . We are adding (increasing) some amount of

pheromone, by the application of two operators

incF : F ×R → F ,& incH : H ×R →H , (8)

and we are decreasing the amount of pheromone by the

application of two next operators

decH : H ×R →H ,& decH : H ×R →H . (9)
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If ω = xl1 ,xl2 , ...,xlr is a word-solution, then the action of incF

on the vector F is

F [l1]← min(τmax,F [l1]+1)

and the action of decF is

F [l1]← max(1,F [l1]−1) ,

on the vector element with the index l1, being the index of the

first element of the solution ω.

The application of two other operators decH and decH is

governed by two formula:

H[li, li+1]← min(τmax,H[li, li+1]+1) ,&

H[li, li+1]← (max(1,H[li, li+1−1]−1)

respectively, for all elements H[li, li+1] of the matrix H, where

i = 1,2, ...,r is the subsequent index of the symbols of the

solution ω.

F. Theoretic model of DAS

Now we describe the theoretical model of DAS for the

single ant, because of its simplicity. The extension for a set

of ants is rather of technical nature, because of the sequential

character of the algorithm in a loop.

By a state of an ant at time t we understand a quadruple

(F(t),H(t),ω(t),ω
∗
(t))

where all objects, but the last one, have been already intro-

duced and the index (t) means that it is their actual values

at time t. The last object is the historical value of the best

word-solution obtained till the moment t.

From the previous considerations we may form the follow-

ing obvious proposition.

Proposition 1.

A. A state of the ant at time t +1 depends on the state of the

ant at time t, only.

B. The set of all possible states of the ant is finite.

Now we may introduce an algebraic model of an DAS

algorithm evolution for a single ant, where:

• Û(t) ∈ [0,1]s – is a column stochastic vector of size s

such, that Û(t) [i] determines a value of probability of a

chance that an ant state in moment t is si,

• T̂ ∈ [0,1]s×s– is a column stochastic matrix of size s×s

such, that T̂ [i, j] determines a value of probability of a

chance that an ant changes its state from si to s j.

Therefore

Û(t)T̂ = Û(t+1) (10)

gives a probabilistic evolution of an ant state between moments

t and t + 1. In general if Û(0) is an initial distribution of

probability of an ant start state, then

Û(i) = Û(0)T̂
i (11)

describes ant state at moments i = 1,2,3, . . .. Hence we for-

mulate the next proposition.

Proposition 2.

Evolution process of a single ant in our theoretical model of

DAS is a Markovian chain.

The method how to fill the matrix T̂ is described in [6], [7].

The question of the convergence has been solved positively as

well, by the application of the convergence theorem formulated

for the case of evolutionary algorithms in [8]. In fact we may

formulate the result on the so-called pointwise convergence

of the DAS, by enlarging the space Σ∗ and adding a super-

state composed of all states in which the last elements are

undistinguishable by the solution quality function.

G. Self-adaptation of α parameter

For the purpose of numerical experiments presented in the

article, we introduced a new mechanism for self-adaptation

of α parameter occurring in the equation determining the

probability of obtaining by a single ant a solution ω ∈ R (see

the equation at the beginning of Section II-E and Eq.1). The

mechanism is based on the notion of radius variation of α
parameter which is further denoted by γ. For practical reasons

(arithmetic capabilities of computer’s CPU) we aim to reduce

γ possible values by 0 ≤ γ < max, where max is some fixed

constant. Then, value of α parameter at time t is in range

from 1.0 to 1.0+ γ (strengthening the pheromone trace) or

from 1.0
1.0+γ to 1.0 (reducing the pheromone trace).

Initially (time t = 0) condition γ = 0.0 is satisfied, thus α
parameter is equal to 1.0 (neutral state). In each subsequent

iteration t > 0 we increment γ radius by 1
N

, where N is the

size of the ant nest. Next α∗ is value of α coefficient which

was previously used while currently best result ω∗ was found.

Further α self-adaptation mechanism is in accordance with the

following rules:

• if |α−α∗| ≤ 1
N

holds, then α value is reset randomly with

uniform probability in the range from 1.0 to 1.0+ γ or

form 1.0
1.0+γ to 1.0,

• if |α−α∗| > 1
N

holds, then α value is reset to α+α∗

2

(bisection scheme).

Finally, if solution ω found at time t is better than solution so

far the best ω∗, γ is again set at 0.0.

The above mechanism of self-adaptation of α parameter can

be limited in the space of discrete values. Thus, all of the prop-

erties of Discrete Ant Algorithm introduced before, including

most significant pointwise convergence, are sustained.

III. APPLICATION TO ENTITY SUMMARISATION

In this section, we demonstrate the application of the

described optimisation technique on an interesting NP-hard

optimisation problem concerning entity summarisation on se-

mantic knowledge graphs that was recently proposed in [2].

A. Semantic Knowledge Graphs

A semantic knowledge graph (henceforth denoted as KG) is

a quite novel format for representic semantic data. Knowledge

graphs can be automatically or semi-automatically constructed

in a process of “knowledge harvesting” from large corpora of

text documents e.g. from the WWW, with use of advanced

open-domain information extraction technology. There are
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existing large datasets in such formats, e.g. DBpedia [9] or

YAGO [10]

Basicly, KG constists of: fact graph and ontology.

The fact graph is a directed multi-graph where

• each node represents some entity (e.g. musician, actor,

politician etc.) from some domain (e.g. art, movies,

politics, etc.), e.g. “Fryderyk Chopin”

• each directed arc represents some “fact” concerning the

entities being its ends, e.g. “Fryderyk Chopin is com-

poser”. Such facts are commonly represented as so called

RDF-triples, that consist of subject, predicate and object,

that is often denoted in the relational form: predicate

(subject, object) (e.g. is(Fryderyk Chopin, composer).

The ontology represents type hierarchy of the entities, i.e.

each entity is connected to type node(s) in the ontology by

special arcs like “type”, etc.

B. Entity Summarisation

[2] studies a problem of entity summarisation in KG, i.e.

given an entity (to be summarised) x, knowledge graph G and

(small) k ∈ N+ (a limit on number of facts in the summary)

to select a set S of facts concerning the entity x that make a

concise “summary” of x. In graph terms the problem consists

in selecting a small set of “representative” arcs incident with

x in the graph.

Since a node in a large KG (like DBpedia or YAGO) can

easily have degree of 100 or higher, and the typical value of k

is around 10, it naturally leads to a hard optimisation problem

of how to select “the best” facts to the summary.

C. Novel Diversity-aware quality measure of entity summary

A good summary should select the most important facts

concerning the entity. Furthermore, as observed and exper-

imentally confirmed in [2], a desired summary would be

diversified i.e. contain facts that concern various aspects of

the entity being summarised.

This would be stated as a combinatorial optimisation prob-

lem via a properly defined bi-criteria objective function ob j

that takes into account 1) importance of facts, 2) mutual

“dissimilarity” between facts.

More precisely, the problem can be defined as: out of the

(given) set D of all facts concerning the entity, select a subset S

of (up to) k facts so that the following measure is maximised:

ob j(S) = (k−1) ∑
d∈S

imp(d)+2δ ∑
d1 6=d2∈S

diss(d1,d2)

where imp : D → Q+ is a “importance” weight of a fact

and diss : D2 → Q+ is represents pairwise “dissimilarity” of

two facts and δ is a parameter to balance between the two

criteria of “importance” and “dissimilarity” (to be tuned ex-

perimentally). We assume that imp is an increasing function of

importance and diss is an increasing function of dissimilarity

of facts.

E.g. given entity “Albert Einstein” and two facts concerning

this entity: d1= hasWonPrize(Albert Einstein, Nobel Prize)

and d2 = hasWonPrize(Albert Einstein, Mateucci Medal) it

TABLE I
ENTITIES SELECTED FOR EVALUATION.

Entity Number of
facts

Number of
predicates

Albert Einstein 32 10
John Wayne 135 12
Denzel Washington 34 7
Robert Mitchum 61 5

seems reasonable that d1 is more important than d2. In

addition, given a fact d3=hasChild(Albert Einstein, Evelyn

Einstein) it seems reasonable that diss(d1,d2) is lower than

diss(d1,d3), etc.1.

The imp and diss functions can be computed based on struc-

tural and statistical properties of the underlying knowledge

graph. In this paper we assume that the values of the functions

are computed externally and we do not focus on this issue.2

The factors of (k−1) and 2 are used in the formula to reflect

the fact that there are k(k−1)/2 possible pairs of a k-element

set.

The problem of optimising the ob j function defined above is

NP-hard (i.e. it can be reduced from MaxSumDispersion NP-

hard optimisation problem). If the diss function was a metric,

one would adapt the existing 2-approximation algorithm for

the MaxSumDispersion problem to this problem.

In the next section, we experimentally apply the ACO

optimisation method described in Section II to solve hard

optimisation problem defined here. This is additionally jus-

tified by the fact that diss function is not necessarily a metric

what excludes the applicability of some known approximation

algorithms for the MaxSumDispersion problem.

IV. EXPERIMENTS

To study practical properties of the described approach

we used YAGO2 semantic knowledge database [10] as the

underlying knowledge graph. We run the experiments on a

sample of entities representing some known people. Some of

them, that represent actors, were earlier used for evaluation in

[2] and some (e.g. “Albert Einstein“) are new. Table I presents

selected entities with number of facts assigned. Also number

of unique predicates per entity is shown in third column. One

can see that the number of facts varies much between entities

but for each of them is much higher than 12. This implies that

applying a brute force approach of considering all possible 12-

element subsets of incident arcs (facts) would be of prohibitive

time complexity.

For each fact of an entity we calculated its importance

weight and for each pair of facts we calculated dissimilarity.

Weights and dissimilarities were later used in ob j(S).
A weight of a fact is given by normalised weight of an

object (ending of an edge). We applied undirected random

1All the mentioned examples are real and taken from the YAGO dataset
2The detailed description of how to compute imp and diss functions

and other concepts concerning diversified entity summarisation measure
mentioned above are out of scope of this publication and deserves a separate
publiction that is currently under preparation.
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walk (with probability of getting back to the entity set to 0.15)

over graph of facts. From this we obtained global weights of

entities. In the next step we took facts (with associated endings

= objects) associated to a studied entity and scaled weights in

a way to fit in range [0,1]. At the end, the most important fact

assigned to the entity has weight 1.0 and the least important

ε(≈ 0).
A dissimilarity of two facts associated with an entity was

calculated using information about types of the entity. Using

information about neighbourhood in hierarchy of types we

measure how often both facts occur in similar entities. By

similar we understand these of close types. Applied method

returns dissimilarities always in range [0,1].

A. Preliminary Results

Figure 1 presents sample results (k = 7) of our method

for δ = 0.0 (diversity oblivious variant) and δ = 10.0 (diver-

sity aware variant) in comparison to the results of diversity

aware algorithm from [2]. Although we show full results

only for single entity (“Denzel Washington“) outcomes for

other entities have similar properties. Facts shown on dif-

ferent images were placed to resemble their similarity. One

should note that since the time of writing [2] the YAGO2

database has been substantially updated and that could slightly

influence final results. However we can see that in Diversum

image and in image for δ = 10.0 some facts are equal e.g.

directed(D.Wash., The Great Debaters), influences(D.Wash.,

Noah Sife). Correspondence between other facts can also

be found e.g. a fact actedin(D.Wash., DJ Vu) was replaced

with fact actedin(D.Wash., The preacher’s wife), informa-

tion about birth date and children were replaced with place of

birth, wife and gender. Similar correspondence can be found

between facts hasWonPrize(D.Wash., Academy Award for Best

Actor) and hasWonPrize(D.Wash., Tony Award).

Additional remarks can be stated after comparison of images

for δ = 0.0 and δ = 10.0. One can see that for δ = 0.0
facts connected to acting career dominate summarisation.

Information about influence, wife and birth place was replaced

with further information about movies that Denzel Washington

acted in.

To measure overall quality of obtained summarisations we

used Wikipedia info-boxes. Our method is based on this used

in [2]. Let S(e) (where |S(e)| = k) denote set of facts in

summarisation of an entity e and W (e) denote set of facts

that can be found in info-box on corresponding Wikipedia

pages. Let f1 ⊲ f2 mean that f1 is equal or more specific fact

than f2 and f2 can be inferred from f1. For example: the fact

that someone is an actor can be inferred from the fact that he

played in some specific movie. Recall′ is then defined as:

Recall′(e) =
|{ f : f ∈W (e)∧∃ f ′∈S(e) f ′⊲ f}|

|W (e)|

Tables II and III present comparison of our method to results

of Diversum and Precis [2]. Recall′ measure for ob j(S) with

δ = 0/1/10 and for Diversum and Precis is shown. Table II

contains results for k = 7 and Table III for k = 12. One can

Diversum [2] for k=7

ob j(S)
for k=7 δ = 10

ob j(S)
for k=7 δ = 0

Fig. 1. Comparison of results for “Denzel Washington”.

TABLE II
COMPARISON OF Recall′ FOR k = 7.

Entity δ=0 δ=1 δ=10 Div. Prec.

J. Wayne 0.31 0.38 0.31 0.29 0.06
D. Wash. 0.50 0.50 0.67 0.60 0.20
R. Mitch. 0.30 0.50 0.50 0.50 0.25

mean: 0.37 0.46 0.49 0.46 0.17

see that our approach performs much better than Precis which

seems to be the weakest one. The second worst approach

is ob j(S) with δ = 0 what shows how important diversity

is. Diversum algorithm is much better and its results are

comparable to our method with δ = 1. When δ is set to 10 and

diversity is high quality is the best according to the measure.

Overall results are promising but need to be verified in further

experiments on more entities.

Authors of Recall′ assumed that info-boxes have size of

about 7-12. This is not necessary true in our case e.g. for

“Albert Einstein“ there is 54 facts. Therefore we suggest

74 PREPRINTS OF THE FEDCSIS. KRAKÓW, 2013



TABLE III
COMPARISON OF Recall′ FOR k = 12.

Entity δ=0 δ=1 δ=10 Div. Prec.

J. Wayne 0.46 0.54 0.54 0.42 0.59
D. Wash. 0.50 0.67 0.67 0.60 0.20
R. Mitch. 0.30 0.50 0.50 0.50 0.25

mean: 0.42 0.57 0.57 0.51 0.35

TABLE IV
DIFFERENT MEASURES FOR “D. WASHINGTON“ k = 7.

δ Recall′ Recall Precision F1

0 0.50 0.43 0.71 0.54
1 0.50 0.43 0.57 0.49
10 0.67 0.57 0.57 0.57

modified measures:

Recall(e) =
|{ f : f ∈W (e)∧∃ f ′∈S(e) f ′⊲ f}|

|S(e)|

Precision(e) =
|{ f ′ : f ′ ∈ S(e)∧∃ f∈W (e) f ′⊲ f}|

|S(e)|

Precision says how many facts out of returned k infer facts

from info-box. Recall measures how many facts in info-box

can be derived from summarisation or in different words: what

fraction of facts we covered out of k possible to cover. As long

as single fact from summarisation can infer one or zero facts

in info-box, what is a specific property of considered data,

Recall is limited to 1.0.

One should note that Wikipedia info-boxes contain some

types of facts that are not included in YAGO2. Therefore we

decided to update sets S(e) in a way to keep only this facts

that can be connected to facts in knowledge base according to

relation ⊲.

Sample comparison of different measures for entity “Denzel

Washington“ can be found in Table IV. For this entity there

is only 6 facts from Wikipedia info-box included into S(e)
therefore Recall < Recall′. Recall that parameter δ controls

diversity of results. For δ = 0.0 only weights are taken into

account and dissimilarities are omitted. For δ = 1.0 we expect

results balanced in weight and diversity and for δ = 10.0 we

expect highly diversified results. One can note that Precision is

very high for δ = 0. The reason is that from every fact “acted

in movie“ we can infer that “D. Washington“ is an actor. From

practical point of view it would be enough to include single

fact of such type. This situation points out vulnerability of this

measure.

Tables V and VI presents average values of four entities

from Table I of measures for k = 7 and k = 12. An analysis

shows that both Recall and Recall′ increase when δ increases.

It means that for higher values of δ more facts from info-boxes

is covered. Precision is the highest for δ = 0. The reason of

this behaviour was explained earlier (in context of “Denzel

Washington“ entity). The highest values of F1 were obtained

for δ= 10 and at the end this value seem to be the best option.

TABLE V
AVERAGE (FOUR ENTITIES) MEASURES FOR k = 7.

δ Recall′ Recall Precision F1

0 0.30 0.50 0.75 0.59
1 0.36 0.61 0.68 0.64
10 0.39 0.61 0.68 0.64

TABLE VI
AVERAGE (FOUR ENTITIES) MEASURES FOR k = 12.

δ Recall′ Recall Precision F1

0 0.34 0.36 0.77 0.46
1 0.46 0.46 0.73 0.55
10 0.46 0.46 0.73 0.55

To study deeper the influence of a parameter δ in ob j(S)
we performed three experiments for different values (0.0, 1.0,

10.0) of this parameter. Tables VII and VIII compare selected

facts for different values of parameter δ. Each column says

what fraction of facts is common for results with two different

values of δ e.g. second column (“1 vs. 0“) says how many

facts is retained when δ = 0.0 is changed to δ = 1.0. The

Table VII presents results for k = 7 and Table VIII for k = 12.

Additionally Figure 2 visually compares second columns from

tables.

Fig. 2. Fraction of facts shared for δ = 0.0 and δ = 10.0.

An analysis of Tables VII and VIII and Figure 2 leads to

TABLE VII
COMMON FACTS FOR DIFFERENT VALUES OF δ (K=7).

Entity / δ 1 vs. 0 10 vs. 0 10 vs. 1

A. Einstein 0.71 0.71 1.00
J. Wayne 0.57 0.57 0.57
D. Wash. 0.57 0.57 0.71
R. Mitchum 0.43 0.43 0.57

mean: 0.57 0.57 0.71
std: 0.12 0.12 0.20

TABLE VIII
COMMON FACTS FOR DIFFERENT VALUES OF δ (K=12).

Entity / δ 1 vs. 0 10 vs. 0 10 vs. 1

A. Einstein 0.50 0.50 0.92
J. Wayne 0.50 0.42 0.75
D. Wash. 0.50 0.42 0.92
R. Mitchum 0.50 0.50 1.00

mean: 0.50 0.46 0.90
std: 0.00 0.05 0.10
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several remarks. At first, when δ is changed from 0.0 to 1.0
or 10.0 about half of facts is retained. It holds both for k = 7

and k = 12. However facts selected for δ = 1.0 and δ = 10.0
differs much e.g. about 30% facts differs for k = 7 and about

10% for k = 12. The difference in behaviour can be explained

by small differences between top facts.

What is more, one can see that there are entities that are

resistant to changes of δ. Figure 3 presents comparison of

facts shared between situations δ = 1.0 vs. δ = 10.0 for k = 7

and k = 12. One can see that for “Albert Einstein“ all facts

are retained. By checking Table VII one can also see that for

this entity adding information on dissimilarity (δ 6= 0) changed

results much less than for the others.

Fig. 3. Fraction of facts shared for δ = 1.0 and δ = 10.0.

V. CONCLUSIONS

Results obtained at current level of advance of our project

are very promising. In all cases our results were not worse

than these described in [2]. Most importantly, the preliminary

results indicate approprate tuning of the δ parameter in the

newly proposed solution quality measure makes it possible

to beat the performance of the previously proposed diversity-

aware algorithm (DIVERSUM) presented in [2]. Anyways,

further experiments and evaluations need to be done to confirm

this, including user-based evaluations.

Also the issue of tuning the δ parameter should be separately

studied as well as theoretical properties of the proposed

measure.

In future work it would be also interesting to experimen-

taly compare the performance of the presented optimisation

technique, especially the influence of the novel self-adaptation

mechanism, with some other existing sub-optimal approaches,

e.g. approximation algorithms for the Max Sum Dispersion

problem and other NP-hard optimisation problems.
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