
Towards a Keyword-Focused Web Crawler

Tomasz Kuśmierczyk1, Marcin Sydow2,1

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Polish-Japanese Institute of Information Technology, Warsaw, Poland,

t.kusmierczyk@phd.ipipan.waw.pl,msyd@poljap.edu.pl

Abstract. This paper concerns predicting the content of textual web documents
based on features extracted from web pages that link to them. It may be applied in
an intelligent, keyword-focused web crawler. The experiments made on publicly
available real data obtained from Open Directory Project1 with the use of several
classification models are promising and indicate potential usefulness of the stud-
ied approach in automatically obtaining keyword-rich web document collections.

1 Introduction and Motivation

Web crawler is a network application that automatically fetches large collections of
web documents via http protocol according to some clearly defined crawling strategy.
It is an essential module in various applications including search engines, for example.
For some applications it is important to limit the fetching process only to documents
that satisfy some criteria concerning their content, for example presence of specific
keywords, specific topic of document, etc. Such task is known as focused crawling.

A crawler generally works in iterations that, in short, are as follows. Picking a bulk
of URL addresses to be fetched, out of an internal priority queue, fetching them via http
protocol, parsing and recording the fetched documents, pushing the parsed links that
lead to new web documents into the priority queue. In real systems, the process is much
more complicated, but the idea is generally as presented.

One of the key technical problems in focused crawling is that the fact whether
a document to be fetched is worth fetching (i.e. satisfies the specified criteria) may
be verified only after it is fetched. In practice, the ratio of web documents satisfying
the focused-crawling criteria to all documents that are available in standard, BFS-like
crawling scheme may be arbitrarily low. Thus, to save crawler’s resources such as net-
work bandwidth, hard disk, CPU, etc. and to efficiently fetch large collection that is rich
of documents that satisfy the crawling criteria it is necessary to predict the contents of
documents to be fetched without fetching them.

This can be stated as a binary classification problem: given some specific criterion
and the set of already-crawled documents that contain links to an unknown web doc-
ument x, predict whether x satisfies the criterion without fetching it. More precisely, a
supervised learning approach can be used, i.e. the model is learnt on a portion of linked
web documents and it is subsequently applied to unknown portion of the web.

1 http://www.dmoz.org/

In this paper, we study a specific problem of predicting the presence of pre-specified
keyword phrase on a web page rather than its topicality that makes it subtly different
from most of approaches previously studied in the literature.

Such a specified task has many important applications that usually involve preparing
a corpus of documents rich in specific keywords to be further processed by other tools.
It may be then used for various tasks ranging from information extraction to statistical
analysis of keyword presence to be subsequently used for tuning keyword-based web
ad campaigns, for example.

1.1 Related Work

The idea of biasing the crawled collections towards a pre-specified criteria has been
intensively studied since early times of web mining. Below we list a selection of repre-
sentative early works on the topic.

Focused crawling based on a classifier was proposed in [4] where a naive Bayes
approach was applied to predict categories of web pages to be fetched.

The phenomenon of “topical locality”, i.e. a topical correlation of web documents
in a link neighbourhood in WWW was studied in [5].

The idea of taking into account, during web content prediction, the pages that are a
few links away, with the concept of context graphs was studied in [6].

Most works concerning the topic use naive Bayesian classifier, though [8] studies
many other models and observes that other models may perform better, e.g. SVM (Sup-
port Vector Machine). In this paper we apply SVM and CART-Trees, besides Bayesian
classifier to evaluate our approach. At this level of work our goal is not to select the best
possible classifier and configuration but to gain some knowledge and intuition about
their properties in context of the task. Therefore, we decided to use three popular ap-
proaches that are also known to be successful in solving similar problems. In further
research one can carry additional experiments leading to slight increase in quality.

The concept of intelligent crawler that learns during the crawling was introduced in
[1]. The same work proposes to measure the quality of intelligent or focused crawling
with harvest rate – the proportion of documents “relevant” to the crawl criteria to all
harvested documents. The same measure is used in our paper.

As an example of a recent survey, [2] studies various algorithms for prioritising the
pages to be crawled with a PageRank-based importance measure.

In contrast to the cited works, and many others, our work focuses on a specific task
of crawling web pages that are rich in pre-specified keywords rather than of a specific
topic. In addition, while we adapt a combination of the machine-learning approaches
studied in other works before, including context-graphs, for example, the techniques
presented in this paper are very simple, efficient and topic-independent.

2 Problem Statement

In the work described in this paper we focus on a specific issue of short crawls based
on usage of a small list of keywords with well chosen seed pages. This keywords might
be user’s queries or names of entities therefore their length is limited to just several

words. By short crawls we understand crawls going no farther than ten or twenty jumps
from layer of seed pages (in experiments we used 25 layers). By well chosen seed we
understand the set of pages’ URLs with high initial Harvest Ratio:

HR =
|valuable pages|
|fetched pages|

where we define valuable pages ={pages from set fetched pages that contain each of
keywords at least once} and by fetched pages we understand all pages downloaded by
crawler in specific set of crawl layers (layer = set of pages fetched by crawler in single
work cycle).

3 General ideas and design

In our approach to focused crawling we utilized two main concepts in this area. Our
design of a classifier can be understood as a combination of simplified content and link
(graph context) analysis approaches. In contrast to the first type of crawlers we decided
to use simple keyword-based features that can be computed in a very fast way. Also
context is analysed in a simplified way: possible partial overlapping of different link
paths is not investigated.

General design of a classification scheme is shown on Figure 1. The scheme presents
a process of deciding whether to fetch or not considered page. The process is composed
of several steps that produces different outcomes. Outcomes are denoted with consecu-
tive letters of alphabet. The result of last step is a final decision that can be then applied
by fetching module. This decision can be interpreted as mentioned in introduction "pre-
diction of content" e.g. system predicts whether considered page contains keywords or
not.

The first step of a decision making process is to extract features (denoted with letter
A on the Figure 1) of all link paths that lead to the considered URL. It is obvious that
only paths included in known part of the web-graph are considered. To avoid loops and
filter out irrelevant paths we consider only these links that lead from lower to higher
layer. In our implementation we limited paths’ length to tree hops.

For every link in the path simple features are extracted:

– whether it points out at valuable (in the sense of the criteria) page or not (of course
this feature is not known for the last link in path)

– how many hops backward is needed to get to valuable page
– what is minimum/average distance (measured in number of words) between link

position on the page and criteria keywords
– what is the number of keywords occurrences in the link source page
– what would be the fraction of valuable pages considering layers up to the one where

the source page is placed if we have not applied cutting-off

As one can see at this point we exploit textual content of previously fetched pages.
Nevertheless the content is used in a very simplified and therefore low-cost way e.g.
single occurrences and relative positions of keywords are considered. Such an approach

Fig. 1. General schema of features extraction and classification process

uses only small part of available information but as further experiments showed final
result, after incorporating these features into graph context structures, is very promising.

During the evaluation process we tested three different subsets of features. First,
denoted as Rich, consist of all possible features. In the second, denoted as Poor, we in-
clude only 5 features: number of keywords for all pages in considered path (3 features),
whether previous page was valuable or not (1 feature) and what is the minimum dis-
tance between link and keywords in the current page (1 feature). Third set of features,
denoted as Medial, includes a number of features in between Rich and Poor sets.

In the second step, lists of features for paths are grouped according to the last link
in the path and then aggregated. For example, having two in-links for the considered
URL we obtain two vectors of features (one per each URL). These vectors (denoted
with letter B on the Figure 1) are used in classification process: either for training or for
test/final classifying.

Classifiers need to define positive and negative class for them. The simplest ap-
proach (denoted Simple) is to select links that directly point to a valuable page. Fetch-
ing or not of some page may influence reachabilitiy of other pages. Therefore we also
considered strategies based on harvest ratio estimation: link is added to positive class if
fraction of valuable pages reachable (in farther layers) from link destination page fulfils
condition:

C · fraction > harvestRatioEstimation

General idea is to teach classifier whether link leads to some valuable (e.g. richer in
valuable pages than the average) sub-graph or not. Right side of the inequality has the
meaning of what is current believe on what is average harvest ratio. It is calculated bas-
ing on pages fetched up to the current moment. Left side consist of real (known during
learning, but not known after deployment) fraction of future-reachable, valuable pages
and constant C that controls what level of harvest ratio is satisfying. It is important to
remember that some of the pages in the reachable sub-graph are also reachable from
other links that also will be considered, therefore C has not obvious meaning. It can be
interpreted as a measure of how much we want to risk fetching unsuitable pages. For
C = 1.0 we denote this fetch criteria as Harvest0, for C = 0.3 as Harvest1 and for
C = 0.001 as Harvest2.

The last step in URL classification process is to decide whether page should be
fetched or not basing on decisions for all in-links (denoted with letter C on the Figure
1). This decision (denoted with letter D on the Figure 1) is made by voting. If there is
≥ F votes then page is fetched; otherwise not. Empirically we chose F = 0.95 what in
practise means that all votes must say ’yes’ for fetching.

At current level of advance of our project we set up experimental environment us-
ing python scripts. The scripts process already downloaded results of crawls and simu-
late behaviour of focused crawler on off-line data. The data was gathered with Apache
Nutch 1.6 crawler and logical consequence of current works would be to reimplement
system using Java language as a plug-in to this crawler.

4 Experiments

4.1 Data Characterisation

In experiments we used results of crawls gathered by Apache Nutch 1.6. For seed URLs
we used three publicly available Open Directory Project directories:

1. business/e-commerce (655 URLs)
2. recreation/theme parks (485 URLs)
3. computers/mobile computing (510 URLs)

For each of these sets we crawled the web with depth parameter set to 25 layers and
maximum breadth set to 1000. It led to fetching more than 20 thousand of pages with
hundreds of thousands of links. We analysed the resulting crawls with different sets
of keywords. On Figure 2 we show dependence of harvest ratio in different layers for
different keywords in considered crawls. Brief review of this figure leads to the conclu-
sion that typical assumption that the ratio of the pages satisfying the crawling criteria
decreases with the distance from the seed set, is not necessarily true when taken verba-
tim. However, after smoothing (not shown) the charts, although quite flat, they generally
indicate weak signals of such phenomenon.

4.2 Links classifier parameters selection

Classification process that is shown on Figure 1 depends on many parameters. To
choose them we performed several experiments using first crawl results (for business/e-
commerce seed). We split links basing on layers into two sets: training set out of layers
3-10 and test set out of layers 11-25. For various keyword sets (shown on Figure 2)
we tested different classifiers (Gaussian Naive Bayes [7], CART-Tree [3], Linear-SVM
[9]), sets of features (Poor, Medial, Rich) and fetch criteria (Simple, Harvest0/1/2).

To select the best classifier we compared plots of F1 measures for test set. We fixed
other parameters and measured quality for different keywords with different overall
harvest ratio (harvest ratio calculated for whole crawl results). All of the plots look
similarly to each other. Three sample plots are shown on Figure 3. In general Gaussian
Naive Bayes classifier performed the best. The worst results were obtained for CART-
Trees. What can also be observed is that results of link classification increase with
number of valuable pages. It can be an effect of better representation of positive class
in training set.

To select the best subset of features and fetch criteria we performed similar proce-
dures. Table 1 shows averaged values of F1 for different features subsets and Table 2
for different fetch criteria. Final conclusion is that the best results are obtained for the
features denoted as Poor with either Simple or Harvest0 fetch criteria.

4.3 Pages classification

To evaluate classification system’s ability to select properly pages to be fetched we
performed further simulation. We used layers 3-10 as a training set and 11-25 as a
test set. At first we calculated harvest ratio without cutting-off any branches (Original

Fig. 2. Harvest ratio in layers for different crawls and keywords (in brackets means are given).

Fig. 3. Link classification quality (F1) for different classifiers.

Table 1. Average (over different keyword sets) F1 of links classification for different sets of
features [Fetch Criteria = Simple].

Set of Features NaiveBayes CART-Tree LinearSVM
Poor 61% 41% 59%
Medial 52% 40% 44%
Rich 52% 39% 35%

Table 2. Average (over different keyword sets) F1 of links classification for different Fetch Cri-
teria [Features = Poor].

Fetch Criteria NaiveBayes CART-Tree LinearSVM
Simple 61% 41% 59%
Harvest0 61% 42% 49%
Harvest1 59% 43% 44%
Harvest2 57% 42% 49%

Harvest Ratio). Then we calculated harvest ratio using classification system to cut-off
some URLs (and eventually branches). It is important to mention that this behaviour
would be quite different in real, on-line focused crawler whereas skipped (cut-off) pages
would be replaced with another ones. Anyway, assuming that in this new set of pages
we can also successfully perform classification, final ratio would be even better.

Figure 4 presents plots of harvest ratio before and after cutting-off for different
fetch criteria. Change of these criteria should strongly influence behaviour of the whole
system. Intuitively, when changing this parameter we change what classifier is learned
to achieve: either to predict that a single page satisfies the criteria or it contains links
that can lead to such. Short analysis of this figure shows that the best results are obtained
for strategy Simple and Harvest0.

Figure 5 presents changes of harvest ratio in test set in crawl results for business/e-
commerce seed. For all of considered keyword sets quality increased visibly. Ratio
improved in the best case of 50%.

4.4 Final evaluation

To confirm that our results apply to different crawl results and keyword sets we repeated
simulation for the rest of configurations from Figure 2. In each case we split pages
into training and test sets similarly as before. Then, we performed classification and
measured harvest ratio change. Charts are shown on Figure 6. These results indicate that
the approach is quite successful as the harvest ratio clearly increases. The improvement
factor varies from about 1.5 (e.g. business/e-commerce:“business services”) to about 10
times (e.g. computers/mobile computations:“ericsson”).

Fig. 4. Harvest ratio for different fetch criteria.

Fig. 5. Harvest ratio increase in crawl for business/e-commerce seed.

Fig. 6. Harvest ratio increase in crawls for computers/mobile-computations and recreation/theme-
parks seed sets.

5 Conclusions and Future Work

We proposed a machine-learning approach to efficiently predict the presence of pre-
specified keywords on unknown textual web pages, based on features extracted from
web pages in a close link neighbourhood. The features are based both on link structure
and textual content. The studied issue has applications in designing an efficient crawler
that effectively collects web documents that are rich in pre-specified keywords.

In the reported experimental evaluation we tested numerous combinations of several
parameter settings, including various feature sets, classification algorithms and keyword
sets. Preliminary experimental results, that are done in a repeatable manner on a pub-
licly available set of web documents from the dmoz.org web site are promising and
indicate that the applied approach seems to be successful in obtaining keyword-rich
web document collections, despite the simplicity of the applied model.

A continuation of this work would involve more systematic and extensive experi-
mentation, including statistical significance analysis, larger data sets and more sophis-
ticated prediction models, including multi-phrase criterion, for example.

An important improvement of the presented approach would involve incorporating
the prediction module into an intelligent crawler that incrementally learns on-line, dur-
ing the crawling process instead of the off-line learning model presented in this paper.
This would also make it possible to apply even more practical evaluation measures that
take into account also the consumption of important resources such as crawling time,
used bandwidth, etc.

Acknowledgements

The first author was supported by research fellowship within "Information technolo-
gies: research and their interdisciplinary applications" agreement between IPS PAS and
Polish Ministry of Science and Higher Education POKL.04.01.01-00-051/10-00, the
second author was supported by PJIIT grant ST/SI/02/2011.

References

1. Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. Intelligent crawling on the world
wide web with arbitrary predicates. In Proceedings of the 10th international conference on
World Wide Web, WWW ’01, pages 96–105, New York, NY, USA, 2001. ACM.

2. Md.Hijbul Alam, JongWoo Ha, and SangKeun Lee. Novel approaches to crawling important
pages early. Knowledge and Information Systems, 33:707–734, 2012.

3. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

4. Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: a new ap-
proach to topic-specific web resource discovery. Computer Networks, 31(11–16):1623 – 1640,
1999.

5. Brian D. Davison. Topical locality in the web. In Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval, SIGIR ’00,
pages 272–279, New York, NY, USA, 2000. ACM.

6. Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and Marco Gori. Fo-
cused crawling using context graphs. In Proceedings of the 26th International Conference on
Very Large Data Bases, VLDB ’00, pages 527–534, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

7. George H. John and Pat Langley. Estimating continuous distributions in bayesian classifiers.
In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, UAI’95,
pages 338–345, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

8. Gautam Pant and Padmini Srinivasan. Learning to crawl: Comparing classification schemes.
ACM Trans. Inf. Syst., 23(4):430–462, October 2005.

9. Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Publishing
Company, Incorporated, 1st edition, 2008.

