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Abstract. Existing methods for finding correlations between bursty time series
are limited to collections consisting of a small number of time series. In this pa-
per, we present a novel approach for mining correlation in collections consisting
of a large number of time series. In our approach, we use bursts co-occurring in
different streams as the measure of their relatedness. By exploiting the pruning
properties of our measure we develop new indexing structures and algorithms
that allow for efficient mining of related pairs from millions of streams. An ex-
perimental study performed on a large time series collection demonstrates the
efficiency and scalability of the proposed approach.

1 Introduction

Finding correlations between time series has been an important research area for a long
time [10]. Previously, the focus has mostly been on a single or few time series, however
recently many new application areas have emerged where there is a need for analyzing
a large number of long time series. Examples of domains where there is a need for
detecting correlation between time series include financial data, data from road traffic
monitoring sensors, smart grid (electricity consumption meters), and web page view
counts.

Bursts are intervals of unexpectedly high values in time series and high frequencies
of events (page views, edits, clicks etc.) in streams [6]. In contrast to the raw time series,
bursts reduce the information to the most interesting by filtering out the low intensity
background so that only information about regions with the highest values are kept (i.e.,
what would be the most visible on plots; see Fig. 1). In this paper, we introduce the
problem of identifying streams of bursts that behave similarly, i.e., are correlated. We
propose to use bursts as indicators of characteristics shared between streams. If there
are many correlated bursts from two streams, it means that these streams are probably
correlated too, i.e., respond to the same underlying events. However, different streams
may vary in sensitivity, may be delayed or there might be problems in the bursts ex-
traction process. As an example, consider Fig. 1 that shows two streams representing
page views of two related Wikipedia articles; the first representing the TV show The
Big Bang Theory, the second one represents one of the main characters from the show.
Although the plots differ in intensity and bursts vary in heights, bursts locations match.
Consequently, a standard way of correlating bursts is overlap relation, overlap opera-
tor or overlap measure [11, 12]. In that sense, bursts are assumed to be related if they



overlap and the measure of stream similarity proposed in this paper is based on this
relation.

Fig. 1: Comparison of page views of two related Wikipedia articles.

The main challenge of correlation analysis of many streams is the computational
complexity of all-pairs comparison. Approaches proposed for general time series are
not appropriate for streams of bursts, since binary intervals have different nature than
real-value, continuous signals. Therefore, we propose novel indexing structures and al-
gorithms devoted particularly to efficient mining of correlated bursty streams. The core
of the approach is a Jaccard-like measure based on the overlap relation and using its
pruning properties to limit the number of pairs of streams that must be compared. Ad-
ditionally, the bursts are indexed in a hybrid index that provides for efficient matching
of streams, further reducing the computation cost of the correlation analysis.

We provide an extensive evaluation of our approach where we study the effect of
different similarity thresholds and collection sizes. Although our approach is generic
and can be applied in any domain, in this paper we perform the experimental evaluation
on burst streams extracted from time series representing the number of page views per
hour for Wikipedia articles. This collection contains a large number of time series and
is freely available, thus facilitating reproducibility of our experiments.

To summarize, the main contributions of the paper include:
– A measure and framework for correlating streams using bursts.
– Indexes and algorithms for efficient mining of correlated bursty streams.
– An experimental evaluation on a large collection of time series studying the effi-

ciency and scalability of the approach.
The rest of this paper is organized as follows. Sect. 2 gives an overview of related

work. In Sect. 3 we formulate the main task and introduce needed notions. In Sect. 4
we discuss issues related to measures of similarity. Sect. 5 describes the indexes and
algorithms used in our approach. Our experimental results are presented in Sect. 6.
Finally, in Sect. 7 we conclude the paper.



2 Related Work

There is a large amount of related work on time series and correlation. For example,
Gehrke et al. [5] designed a single-pass algorithm that approximately calculates corre-
lated aggregates of two or more streams over both landmark and sliding windows. In [4]
correlations were used for measuring semantic relatedness in search engine queries.
In [15] it is studied how to select leading series in context of lagged correlations in
sliding windows. However, the main challenge of correlation analysis is computational
complexity of all-pairs comparison. Zhu and Shasha [17] addressed the problem of
monitoring thousands of data streams. Mueen et al. [9] considered computing correla-
tions between all-pairs over tens of thousands of time series. In both papers, they used
the largest coefficients of the discrete Fourier transform as the approximate signal rep-
resentation. In other works, researchers were mining and correlating large numbers of
time series (millions of streams) using symbolic representation [2, 3]. However, binary
intervals (bursts) cannot be effectively compressed (not loosing much information and
without introducing artifacts) and indexed in that way. Similarly, we rejected wavelets
as not matching bursts characteristics and efficient processing requirements.

Our task has similarities to clustering (a survey on clustering of related time series
can be found in [8]). Those techniques are either not scalable, require embedding into
Euclidean space, or provide only approximate results. Related works can be also found
in the area of mining correlated sets (e.g. [1]) and also sequential patterns. However,
bursts (with overlap relation) cannot be translated into set elements or items without
additional assumptions or introducing transformation artifacts.

There are several papers exploiting bursts in a way similar to ours. Vlachos et
al. [12] focused on indexing and matching single bursts. This task is different from
our since bursts are considered independently within streams. Vlachos et al. adapted
containment encoded intervals [16]. Although the proposed index is efficient in an-
swering queries composed of sets of bursts, is not able to handle whole streams. An
interesting approach to discover correlated bursty patterns containing bursts from dif-
ferent streams, can be found in [13, 14]. The basic idea is to introduce a latent cause
variable that models underlying events. A similar approach was applied in [7] where
they used hidden Markov models with Poisson emission distributions instead. However,
all these approaches are based on matching probabilistic models and are not scalable,
the authors assume not more than some hundreds of streams.

3 Preliminaries

We assume a set of N raw streams of basic events (or time series). Time intervals of
untypically high frequencies (or values) are called bursty intervals (bursts).

Definition 1. Burst b is time interval [start(b), end(b)] of high frequency of basic
events, where start(b) denotes starting time point of the burst and end(b) stands for
ending time point.

As mentioned above, we do not consider bursts height or width but only the fact
of occurrence. The bursts are extracted from the original streams either in on-line or



offline manner, for example using the algorithm of Kleinberg [6]. Similar to [11, 12],
for the purpose of measuring similarity we use overlapping bursts. We define the overlap
relation as follows:

Definition 2. Overlap relation between two bursts b and b′: b ◦ b′ ⇐⇒ (start(b) ≤
start(b′) ∧ end(b) ≥ start(b′)) ∨ (start(b′) ≤ start(b) ∧ end(b′) ≥ start(b)). The
overlap relation is reflexive and symmetric but not transitive.

The burst extraction process results in a set of bursty streams:D = {E1, E2, ..., EN}
where N = |D|.

Definition 3. Streams of bursty intervals are defined as Ei = (bi1, b
i
2, ...) where

bij ◦ bik ⇐⇒ j = k and start(bij) > start(bik) ⇐⇒ j > k.

We define overlapping between streams as follows:

Definition 4. Set of bursts of Ei overlapping with Ej: Oi
j = {b : b ∈ Ei ∧ ∃b′∈Ej b ◦

b′}. Set of non-overlapping bursts of Ei when compared to Ej: N i
j = Ei \ Oi

j . We
denote ei = |Ei|, oij = |Oi

j |, nij = |N i
j |.

The main problem we address in this paper is how to efficiently mine interesting
pairs of bursty streams.

Definition 5. Interesting correlated streams are defined as pairs of streams, which for
some measure of similarity J have similarity no smaller than a threshold JT .

Definition 6. We define a set Sn containing all streams with exactly n bursts:
Sn = {Ei : Ei ∈ D ∧ ei = n}.

4 Correlation of Bursty Streams

We aim at mining streams having correlated (overlapping) bursts. Neither set oriented
measures such as the Jaccard index, contingency measures such as the phi coefficient
nor general time series measures such as dynamic time-warping or longest common
subsequence are directly applicable. Because of overlap relation properties, streams of
bursts cannot be mapped to sets. Bursts could be grouped in equivalence classes accord-
ing to underlying events, but such mapping is not available. Also, interpreting intervals
(bursts) as continuous, real signals implies the need of adjustments which at the end
introduce undesirable effects. For example, scaling time to maximize stream matching
violates the assumption about simultaneous occurrence of related bursts. Consequently,
we decided to focus on the overlap relation e.g., our measure should rely on oji ,oij ,nji ,
and nij . Below, we will discuss possible solution and desired properties.

We are interested in measures that can be efficiently tested against many pairs of
streams. We would like to be able to prune pairs that have similarity below some thresh-
old in advance. For that purpose, we introduce pruning property.

Definition 7. Similarity measure s has pruning property if s ≥ sT =⇒ |ei − ej | ≤
f(ei, ej , sT ) where sT is some constant value of similarity (threshold) and f is some
function.



For measures having this property, the number of pairs of streams to be considered
can be reduced as only pairs having similar (difference is limited by f ) number of
bursts can be scored above the threshold sT . Naturally, we would like f to be as small
as possible. In practice, streams have limited burst counts. Then, only f obtained values
below that limit are interesting and allow for pruning.

We adapted one of the measures used widely in areas such as information retrieval
and data mining, the Jaccard index. Unfortunately, bursts are are objects with properties
different from set elements. In the general case there is no simple mapping, so the
measure needs to be defined for the new domain as shown below. If there is a one-to-
one assignment between overlapping elements from both streams, our measure reduces
to standard Jaccard index. In that case, overlapping pairs of bursts from both streams are
treated as common elements of sets. This situation is obviously a special case, in general
one interval can overlap with two or more intervals. Because of that, our measure also
does not preserve triangle inequality.

Definition 8. For the purpose of measuring similarity of bursty streams we define an
adapted Jaccard index as:

J(Ei, Ej) =
min(oji , o

i
j)

ej + ei −min(oji , o
i
j)
∈ [0, 1]

Lemma 1. J has pruning property with f(ei, ej , JT ) = max(ei, ej)− dmax(ei, ej) ·
JT e

The maximum value of J for a pair of two streams Ei, Ej is obtained when
min(oji , o

i
j) = min(ej , ei). Then the measure reduces to: Jmax = min(ej ,ei)

max(ej ,ei) → J ≤
min(ej ,ei)
max(ej ,ei) . Without loss of generality, we assume that ei ≥ ej . This implies J ≤ ej

ei

and for fixed JT : JT · ei ≤ ej ≤ ei. Consequently, to obtain related pairs, sets Sn, need
to be compared only with streams in Sm where m ∈ [dn · JT e, n].

Definition 9. We define connected counts connected(n) as the set of such values m
for some burst count n that m ∈ [n− f(n,m, sT ), n]. We denote n as the base count.

5 Indexing and Mining

Mining related pairs is a computationally expensive task. The cost of similarity measure
calculation for a single pair Ei, Ej is O(max(ei, ej)). For all pairs, it sums up to
O(|D|2e), where e stands for average number of bursts per stream. However, thanks
to the pruning property of the measure, we do not need to consider all pairs: we can
prune those differing much in number of bursts. Unfortunately, what is left can be also
expensive to compute. Therefore further optimizations are needed.

A high level description of our approach is presented on Fig. 2. The workflow can
be used to describe both an offline setting where source streams are stored in some lo-
cal storage, and an on-line setting where streams of events are produced in a continuous
manner. In the latter case we assume that the burst detection algorithm is applied im-
mediately, and therefore the amount of data is significantly reduced. Although initially
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Fig. 2: Overview of data workflow.

there can be millions of raw streams, in real-life contexts we expect no more than some
of tens of bursty intervals per stream. Each interval can be stored using only two num-
bers (start and end time point), and then we are able to store in main memory all bursts
and all streams from the interesting period of time.

Bursty streams are indexed in a high level index composed of buckets. Buckets are
responsible for keeping track of subsets of streams (or pairs of streams) and can contain
lower-level indexes. The partitioning into buckets is based on number of bursts per
stream. Mining of correlated pairs is done by comparing buckets between themselves
and/or against stored streams. However, details vary according to approaches described
below.

5.1 Naive Approach

As baseline, which we call Naive, we compare all pairs that are not pruned. As described
above, streams are partitioned to buckets according to number of bursts. I.e., set Sn is
placed in bucket n, and there is no further lower-level indexes within the buckets. To
obtain all related pairs, for each base count n we simply check all connected counts
m and compute the correlation J between all possible pairs of streams from Sn × Sm

(n-th bucket vs. each of m-th buckets).

5.2 Interval Boxes Index

The naive baseline can be improved by speeding up the matching within buckets. Each
bucket n is assigned a lower-level index responsible for keeping track of Sn. During
the mining, the bucket n index is queried with all streams having connected counts
m, i.e., queried with streams from

⋃
m∈connected(n) S

m. One approach that could be
used is to apply some of the existing indexes designed for efficient retrieval of (single)
overlapping bursts, e.g., containment encoded intervals [16] for selection of candidates.
Then candidate streams returned by the index, already having at least one overlapping
burst with the query stream, are validated using the similarity measure and those under
the threshold are rejected. Unfortunately this does not scale well, because candidate
sets increase proportionally to number of streams in data set. In order to overcome this,
we propose to consider k-element, ordered subsets of bursts. Each k-subset is placed
in a k-dimensional space as shown in Fig. 3. The first burst from the subset determines
interval in the first dimension, second burst determines interval in the second dimension,
and so on. A k-element subset determines a k-dimensional box. For example, in Fig. 3,



          1        2        3       4       5      6      7       8      9      10    11    12    13   

12

11

10

  9

  8

  7

  6

  5

  4

  3

2

1

dim1

dim2

Ei Ej 

Ei 

Ej 

diagonal

Fig. 3: Example of IB index: indexed stream
Ei and querying stream Ej (k = 2).

List with sets of pointers

Ei 

Ej 

E1 

EN 

Fig. 4: Structure of a single LS index.

we have all possible 2-dimensional boxes representing all possible ordered 2-subsets of
streams Ei and Ej .

The idea of the Interval Boxes (IB) index is to have a k-dimensional box assigned
to stream Ei in the index, that will match (overlap) some k-dimensional box assigned
to Ej that the index will be queried with. Assuming that Ej , Ei have similarity above
some similarity threshold JT , there are oji bursts of Ej overlapping with oij bursts of
Ei. Consequently, there are two boxes: µ-dimensional, where µ = min(oji , oij), of Ej

and µ-dimensional of Ej that overlap. What is more, all k-dimensional projections
of these boxes also overlap. Now instead of single burst, we are matching k bursts at
once. Because we are matching k bursts at the same time, the probability of spurious
candidates (that will be later rejected as having less than the similarity threshold) is low.
The higher k we choose, the lower that probability and the additional cost of validating.

In practice, boxes can be stored in any spatial index that supports overlap queries.
In our approach R-trees were used. Because bursts are ordered, only the ”top” half of
the k-dimensional space is filled. Ordering of bursts is important because of complexity
issues. It significantly reduces number of subsets to be considered and inserted into the
index. However, the guarantee that no potentially matching streams will be missed still
holds. If some burst b from stream Ei overlaps with some b′ from stream Ej it means
that those later than b cannot overlap with these being earlier than b′.

One should also notice boxes on the diagonal. Pure subsets (without replacement)
do not cover situations where one burst overlaps with many. In such cases, some burst
must be repeated in several consecutive dimensions (bursts are ordered). For k = 2
each burst can be used once, twice or not used at all in the box. For k = 3 each burst
can be repeated once, twice, three times or not at all as long as no more than 3 dimen-
sions are used in total. Higher k implies many more combinations to be considered.
This can significantly increase the number of boxes and decrease the efficiency. On the
other hand multiple overlapping is not very probable. To prevent inserting and querying
indexes with unnecessarily many boxes, we introduced an additional parameter ρ that



Algorithm 1 Generation of k-dimensional boxes
1: function BOXES(E, k, r)
2: C ← COMBINATIONS(E, k)
3: C′ ← ∅
4: for all r′ = 1..min(r, ρ− 1) do
5: k′ ← k − r′
6: for all c′ ∈ COMBINATIONS(E, k′) do
7: for all I ∈ COMBINATIONSREP(1..|c′|, r′) do
8: c′ ← c′ with bursts of indices I repeated
9: C′ ← C′ ∪ c′

10: return C ∪ C′

COMBINATIONS(S, k) - k-element ordered combinations of S
COMBINATIONSREP(S, k) - combinations with replacement

limits how many times, i.e, in how many dimensions, each burst can be repeated. As a
result, some pairs, i.e. relying on multiple overlaps between bursts, may be missing but
the mining speed increases significantly.

Mining correlated pairs of streams is done by querying all the indexes with streams
having connected counts. Index in bucket n, where n is the base count, is queried with
all streams from Sm, for all possible connected counts m. The index itself is queried
with all possible k-dimensional boxes generated from query stream. For each query
box all overlapping boxes from the index are retrieved. For each of them candidate
pair (query stream and matching stream from the index) is extracted. In the final step,
candidate pairs are validated against similarity measure J and only these having no less
than threshold value JT are kept.

Algorithm 1 shows how k-dimensional boxes are generated. It is composed of two
parts. In line 2, boxes without repetitions are generated. In lines, 3-9 boxes having up
to r dimensions (given as the parameter) being repetitions of previous dimensions are
computed (recall that bursts and dimensions are ordered). An important line is 4, where
we additionally limit number of dimensions being repetitions with ρ. For ρ = 1, the set
of combinations with repetitions C ′ remains empty.

The number of k-subsets (and consequently k-boxes) without replacement (ρ = 1)
of some stream Ei is equal to

(
ei

k

)
. For higher values of ρ it is even more. To keep the

number of generated boxes (both in the index and in queries) relatively small, k should
be either very small or close to ei. Consequently, we introduce two types of indexes:
IBLD (low dimensional, for small k-s) and IBHD (high dimensional, for big k-s) that
have very different properties.

IBLD Index IBLD (low dimensional) indexes are ordinary k-dimensional (e.g., k =
2) R-trees. The dimensionality k is constant for indexes in all buckets. Consequently,
insertion, deletion and querying require generation of all possible k-dimensional boxes.

What is important, IBLD cannot be used for streams having very small number of
bursts (e.g. ∼ k) and for very low values of threshold. The index does not work when
the similarity for output pair (by output pair we mean the pair that has similarity above



Algorithm 2 Querying the IBHD index
1: function QUERY(Ej , JT )
2: n← Index.baselevel
3: k ← Index.dimensionality
4: m← |Ej | . We assume dn · J ′T e ≤ m ≤ n
5: r ← m− dJT · (n+m)/(1 + JT )e
6: CANDIDATES← ∅
7: for all B ∈ BOXES(Ej , k, r) do
8: MATCHING← Index.getOverlapping(B)
9: STREAMS← B′.stream for each B′ ∈ MATCHING

10: CANDIDATES← CANDIDATES ∪ STREAMS
11: OUTPUT← ∅ . Subset of interesting pairs with Ej on the first position
12: for all Ei ∈ CANDIDATES do
13: if J(Ej , Ei) ≥ JT then
14: OUTPUT← OUTPUT ∪ (Ej , Ei) . Output pair found
15: return OUTPUT

the threshold) of streams is obtained for number of overlapping bursts (measured with
oij , oji ) lower than k.

IBHD Index IBHD (high dimensional) indexes require k to be as high as possible in
order to reduce overall size. On the other hand, if k > µ we can miss matching between
some pairs. From that we imply k = µ. Unfortunately, µ depends on the measure
threshold. Consequently, IBHD indexes are built for some threshold J ′T and cannot be
used for finding pairs of similarity below this threshold. For index built for J ′T , only
values JT ≥ J ′T can be used. The border situation is when all bursts of stream having
m′ = dJ ′T · ne (the lowest number of bursts that stream must have to be compared
to streams having n bursts) overlap with bursts of stream having n bursts. It means
k = dJ ′T ·ne. To match streams having m bursts for m > m′, higher values of k would
be better. Unfortunately, this would introduce additional costs both in computations and
space needed. Therefore, we prefer to have a single index for whole range of connected
countsm ∈ [m′, n] and for each nwe choose k = m′. This value is the highest possible,
guaranteeing not missing any pairs (holds when ρ =∞; for ρ <∞ some pairs may be
missing but not because of selection of k and due to some boxes being skipped).

As mentioned earlier, one of the major issues influencing speed is the possibility
of single burst overlapping with many. Fortunately, in IBHD indexes, only a limited
number of dimensions needs to be covered with repeated (copied) bursts. For example,
if n = 10 and JT = 0.7, the lowest m = 7. It means that min(oji , o

i
j) = 7 and at least

7 out of 10 bursts must be different. Only 3 dimensions can be repeated. In general, for
base count n: r = n − dJT · ne. For connected counts m situation is slightly different
(as m ≤ n) and r = m− dJT (n+m)/(1 + JT )e.

Algorithm 2 shows how above ideas can be implemented in practice. The index
keeps track of streams having n bursts and can handle queries of streams having m ∈
[m′, n] bursts. For input streamEj all possible k-dimensional boxes are generated. Each
of these boxes is used to query internal index (e.g., R-Tree). The internal index returns



boxes overlapping with query boxes. For each returned box relevant stream identifier
is extracted. Then, streams are appended to the candidates set. Finally, all generated
candidate streams Ei are compared to Ej using similarity measure J . If the value is
above the threshold JT the pair (Ej , Ei) is included in the result set.

5.3 List-based Index

For the IB approach, in bucket n we store the index responsible for keeping track of
streams from Sn. An alternative is to use buckets indexed with two values: base count
n and some connected count m. Each bucket contains a single List-based (LS) index
covering both Sn and Sm. The number of connected counts to be considered depends on
the predetermined threshold J ′T . Consequently, such an architecture is able to support
mining for thresholds JT ≥ J ′T .

The structure of a single LS index is shown in Fig. 4. For LS we use the notion of
discrete time where the timeline is divided with some granularity (e.g., hour, day, week;
depending on data characteristics) into time windows. In such a setting bursts must be
adjusted to window borders. For each window we store the information about all bursts
overlapping with it. Consequently, the index is a list of sets of references pointing at
bursts where a single set represents single time window.

For the Naive and IB approaches, mining was done by querying proper indexes with
all of the input streams. Using LS index it is done directly. Algorithm 3 presents how
values of oij ,oji are computed. The main loop (lines 5-21) iterates over all time windows
(sets of references) indexed with t. In each step (for each t), four sets are computed:
ACTIVE, NEW, OLD, and END. ACTIVE is a set of bursts active in the current time
window (taken directly from the index). NEW is a set of bursts that were not active in
the previous (t − 1)-th time window but are active in the current one, OLD contains
those active both in the current and the previous window and END those active in the
previous but not in the current one. A map (dictionary) OVERLAPS contains sets of
streams overlapping with bursts active in the current time window. Keys are bursts and
values are sets of streams. Maintenance is done in lines 11-12. When a burst ends, it
is removed from the map. Pairs of overlapping bursts that were not seen previously (in
the previous step of the main loop) are those from the set NEW×NEW∪OLD×NEW.
For each of these pairs the map OVERLAPS and the map o are updated in lines 16-
21. Using the map o, candidate pairs of streams can be validated against the threshold
JT . The final step of the mining (lines 22-26) is then validation of all pairs included
in the map o. Only pairs having at least one pair of bursts overlapping are considered
(included in the o). What is more, each pair is validated in constant time as oij ,oji (and
ei, ej) are already known.

The biggest disadvantage of the LS index is its memory use if there are many streams
bursty in a particular index time window (bursts from many streams overlapping at
once), i.e., when there are particularly many references in some list set. A solution to
this problem is sharding, i.e., we use several indexes per each high-level bucket n, m.
Each index covers only a subset of possible pairs of streams. Division of the pairs can
be done in any way. Function QUERY guarantees that any pair of bursts, and any pair of
streams having bursts overlapping, will be considered. We only need to make sure that



Algorithm 3 Candidates generation and validation in LS index
1: function QUERY(JT )
2: o← ∅ . dictionary {(i, j)→ current value of oji }
3: PREV← ∅ . empty set of bursts
4: OVERLAPS← ∅ . dictionary {burst→ set of overlapping streams}
5: for all t = 1...Index.length do . Iterate over consecutive windows
6: ACTIVE← Index.interval[t] . Bursts in t
7: NEW← ACTIVE\PREV . New bursts
8: OLD← ACTIVE\NEW . Old bursts
9: END← PREV\ACTIVE . Ending bursts

10: PREV← ACTIVE

11: for all b ∈ END do
12: delete OVERLAPS[b]

13: for all b, b′ ∈ NEW× NEW ∪ OLD× NEW do
14: i← b.streamindex
15: j ← b′.streamindex
16: if j 6∈ OVERLAPS[b] then
17: OVERLAPS[b]← OVERLAPS[b] ∪ {j}
18: oij = oij + 1 . Increase count

19: if i 6∈ OVERLAPS[b′] then
20: OVERLAPS[b′]← OVERLAPS[b′] ∪ {i}
21: oji = oji + 1 . Increase count
22: OUTPUT← ∅ . Subset of interesting pairs
23: for all (i, j) ∈ o do

24: if min(oij ,o
j
i )

ei+ej−min(oij ,o
j
i )
≥ JT then

25: OUTPUT← OUTPUT ∪ (Ej , Ei) . Output pair found
26: return OUTPUT

all possible pairs of streams (that are not pruned) are at some point placed together in
the same LS index.

5.4 Hybrid Index

The IB and LS indexes have different properties and are appropriate for data of different
characteristics. IB efficiency depends mostly on the number of k-dimensional boxes in
the index. This increases fast with number of bursts per stream and when threshold J ′T
is decreasing (this applies only to IBHD). On the other hand, LS efficiency does not
depend directly on either number of bursts per stream or J ′T . This two factors influence
only number of buckets to be considered, but not LS processing time. What affects
mostly the efficiency here is the size of sets of references. The bigger sets are, the more
pairs need to be considered at each step.

Consequently, we propose the Hybrid index that exploits good properties of both
approaches. It uses IBHD for low base counts (and proper connected counts) and LS



for high base counts. Switching count value depends mostly on data characteristics but
some observations can be made. Number of boxes generated for IBHD index for each
base count e depends mostly on index dimensionality k. Assuming ρ = 1, the number of
boxes generated per stream can be approximated as ∼ ee−k. This can be seen from the
number of distinct k-element subsets

(
e
k

)
= e!

(e−k)!k! , when k is close to e, then (e−k)!
is small and

(
e
k

)
∼ e · (e− 1) · .. · (k+1) ∼

∏
l=1..(e−k) e ∼ ee−k. The exponent e− k

changes stepwise. For example for J ′T = 0.95 it changes for e = 20, 40, 60, ..., and in
ranges e ∈ (0, 20), [20, 40), [40, 60), ... the efficiency of IBHD is more or less constant.
Consequently, it is enough to check only one switching count per range, starting from
lower values toward higher ones.

5.5 On-line Maintenance

The described approaches can be used both in the offline and on-line case. For offline
mining, where we have information about number of bursts per stream available in ad-
vance, construction of the indexes is performed by assigning each stream to the proper
bucket (or buckets for LS) and then by inserting it into the index (or indexes) within
that bucket.

In the on-line case, bursts arrive and number of bursts per stream changes in a con-
tinuous way. When a new burst is extracted, the relevant stream is moved from the
previous bucket (or buckets) to a new one matching the new number of bursts. In addi-
tion, indexes need to be updated accordingly. Although this introduces additional main-
tenance cost these operations are distributed over time. In contrast to offline mining,
where the whole dataset must be processed at once, for the online case the cost is dis-
persed among burst arrival moments.

For the IB index, deletion and insertion require generation of all k-dimensional
boxes. First, all boxes generated for the old version of the stream (without the new
burst) are deleted from the proper spatial index. Then, all boxes generated for the stream
with the new burst included are inserted into the index responsible for keeping track of
streams with higher number of bursts.

For the LS index, insertion and removal are performed by adding and deleting rel-
evant burst references. This is done over all indexes matching the stream burst count
(recall that each stream can be indexed in several buckets). First, all sets of references
assigned to time windows overlapping with old bursts are updated by deletion of proper
references. Then, references to all bursts including the new one are inserted to sets into
indexes matching the new number of bursts.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All our experi-
ments were carried out on a machine with two Intel Xeon X5650 2.67GHz processors
and 128GB RAM. However, experiments were limited to using one thread and 24GB
of main memory.



6.1 Experimental Setup

Dataset. For the experimental evaluation we used a dataset based on English Wikipedia
page view statistics1 (∼ 4.5M articles) from the years 2011-2013. These statistics have
a granularity equal to 1 hour, so that the time series for each page covers 26304 time
points. Bursts extraction was performed using Kleinberg’s off-line algorithm [6]. In
post-processing, we reduced the hierarchical bursts that are produced by the algorithm
to a flat list of non-overlapping bursts, and we also filtered out bursts that had average
height (measured in original page views) lower than twice the average background level.
After applying this bursts extraction procedure the dataset had ∼ 47M bursts in total.

Key features that influence efficiency of our approach are number of streams, num-
ber of bursts per stream, and length and distribution of bursts. Fig. 5 shows the distribu-
tion of number of bursts per article (stream) in our dataset. One can see that pages with
low number of bursts dominate and that number of streams decreases fast when num-
ber of bursts per stream increases (notice the use of logarithmic scale). Streams having
a low number of bursts have a higher probability of spurious correlations, therefore
we filtered out streams having less than 5 bursts. After that, we are left with ∼ 2.1M
streams, having in total ∼ 43M bursts.

Fig. 6 presents the distribution of length of bursts in the dataset after filtering. In
the dataset short bursts dominate. The average length is equal to 28 hours but median
is only 10 hours. Nevertheless, one should notice there is non-negligible number of
long bursts (100-1000 hours) that significantly increases the sizes of candidate sets and
computation time for indexes.
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Fig. 5: Number of bursts per stream.
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Fig. 6: Length of bursts.

Algorithms and measurements. In the experiments, we studied the Naive, LS , 2-
dimensional IBLD (denoted as IBLD2), and Hybrid approaches. For LS the number of
streams in bucket processed at once was limited to 50k, and for the Hybrid approach
IBHD was used for burst count < 40 and LS was used for burst count ≥ 40). In the
experiments we set ρ = 1 and JT = J ′T . Mining time is the actual run time for mining,
i.e., excluding index building time (which was measured separately).

1 https://dumps.wikimedia.org/other/pagecounts-raw/



6.2 Experimental Results

Fig. 7 presents the time for querying streams for each base count, i.e., for each stream
having a particular base count (and stored in the index), the streams having related
counts (wrt. to the particular base count) are used to query the stored streams. The
efficiency of both the Naive and LS approaches increases with increasing burst count.
This is caused by a decreasing number of streams having high number of bursts. IBLD2
behaves worse than the Naive and LS approaches for almost any base count. The reason
is that the cost of matching of all possible 2-dimensional boxes dominates the benefit
of reduced number of pairs to be validated. Notice that the IBHD index approach has
a stepped plot. Whenever the difference between index dimensionality and base count
increases, the computation time also increases (about 10 times). The observations in this
figure also gives a justification for the Hybrid approach, where IBHD is used for low
burst counts and then LS for the higher ones. It also shows the threshold for switching
strategy, i.e., with burst count of 40.

Fig. 8 shows the cost for mining correlations for random subsets of varying cardinal-
ities (the cost of IBHD is not shown since even for small datasets the number of boxes
per stream can be extremely high). As can be seen, IBLD2 is not scalable and even
behaves worse than Naive in all cases. In contrast, both the LS and Hybrid approaches
scale well. However, for large volumes Hybrid outperform all the other approaches, as
it combined the benefits of IBHD and LS. Fig. 9 shows the cost of building the indexes.
As can be seen, this cost is insignificant (less than 10%) compared to the cost of the
correlation mining.

Fig. 10 presents the behavior of the Hybrid approach for different thresholds J ′T .
With higher threshold, the cost of mining reduces. There are two reasons for that. First,
the number of counts connected to each base count is expressed by this value. Second,
the IBHD dimensionality is also related to it. Consequently, for lower J ′T more pairs
need to be considered and using lower dimension indexes.

As shown above, the Hybrid approach is scalable wrt. computation time. Regarding
memory requirements, the indexes in this approach fit in main memory. The reason is
that the LS index size can be easily expressed by the number of pointers plus some
additional space for the main list. The number of pointers is equal to total number of
bursts times average burst length. IBHD uses spatial index and memory usage depends
mostly on the size of that index, and is proportional to number of boxes inserted times
insertion cost. For the dataset used in this evaluation, the size of the indexes is in the
order of a few GB.

Fig. 11 illustrates how the number of generated pairs increases with the size of the
dataset. The output size increases quadratically with input size, up to ∼ 82k for the
whole dataset. The Naive and LS approaches guarantee generation of all pairs above
the selected threshold. This does not hold for Hybrid. However, in our experiments the
number of missing output pairs was small e.g., for N = 500k streams it was always
less than 15%. Fig. 12 shows the influence of ρ = 1 on N = 100k streams and for
different thresholds. We can observe that even for low thresholds, e.g., J ′T = 0.8, the
number of missing pairs is smaller than 15%. Furthermore, for higher thresholds the
matching streams must have smaller differences in number of bursts and therefore the
influence of ρ decreases.
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Fig. 7: Querying efficiency for different
base counts (J ′T = 0.95, N = 100k).
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Fig. 8: Index mining time for different data
volumes (J ′T = 0.95).
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Fig. 9: Index building time for different data
volumes (J ′T = 0.95).
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Fig. 10: Hybrid mining time for different
thresholds (N ∼ 2.1M ).
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Fig. 11: Number of generated pairs for differ-
ent data volumes (J ′T = 0.95).
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Fig. 12: Number of missing pairs for different
thresholds (N = 100k, ρ = 1, Hybrid).

7 Conclusions

With emerging applications creating very large numbers of streams that needs to be an-
alyzed, there is a need for scalable techniques for mining correlations. In this paper, we
have presented a novel approach based on using bursts co-occurring in different streams
for the measurement of their relatedness. An important contribution of our approach
is the introduction and study of a new Jaccard-like measure for correlation between
streams of bursts, and exploiting the pruning properties of this measure for reducing the
cost of correlation mining. Combined with a new hybrid indexing approach, the result
is an approach that allows for efficient mining of related pairs from millions of streams.

In the future we plan to work further on improvements of our algorithms. One in-
teresting issue is border cases that not necessarily follow the assumptions of the algo-
rithms, i.e., when there is many streams bursting often and almost always in overlapping
time moments. We also would like to investigate how to reduce the cost of online index
maintenance.
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