
ON VALIDATION AND PREDICTABILITY
OF DIGITAL BADGES’ INFLUENCE ON

INDIVIDUAL USERS
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THRESHOLD BADGES
A badge is a formal indicator of some ac-

complishment or skill that when shown to
the others confirms the status of its owner.

Threshold badges are awarded after a user
performs a certain number of desired ac-
tions.
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If the promise of a digital badge award
motivated / will motivate

a social platform user
to perform desired actions?

Challenges:
– Random temporal fluctuations
– Users heterogeneity
– No ground truth

OBSERVATIONS & MODELS
Observation 1: Attracted users
change their mean behavior around
the badge awarding time bu.
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Model 1: User temporal trace is a Poisson process:
{tu} ∼ PP (λiu

u (t))

with intensity depending on the latent variable iu:
→ iu = 0: user not attracted by the badge =⇒ user does not
change the behavior over time and intensity is a constant:

λ0
u(t) = λ0(u)

→ iu = 1: user attracted by the badge =⇒ actions mean
intensity changes when user is awarded the badge at bu:

λ1
u(t) =

{
λ1
0(u) if su < t ≤ bu
λ1
1(u) if bu < t ≤ eu

Observation 2: Influenceable
users have similar characteristics,
e.g., similar values of ~xu.

Model 2: Users form clusters in covariates space, e.g.,
users with iu = 1 attracted to the badge can be partially
separated from not attracted ones having iu = 0.

JOINT MODELS OF TEMPORAL TRACES AND COVARIATES

Idea: Map between iu and clusters of users
formed in either point processes (I.) or co-
variates (II.) space.

I. CLUSTERING POISSON PROCESSES

Generative process:
1. Assign user u to one of the clusters:

iu ∼ Bernoulli(πu)

with priors being a function of ~xu:

πu =
1

1 + e−~w·~xu

2. Draw intensities and point processes using
cluster-dependent parameters:
→ for cluster assigned iu = 0:

λ0(u) ∼ Gamma(α0, β0)
→ for cluster assigned iu = 1:

λ1
0(u) ∼ Gamma(α1

0, β
1
0)

λ1
1(u) ∼ Gamma(α1

1, β
1
1)

To fit α-s, β-s and iu, we integrate out intensi-
ties λ and perform EM. Additionally, in every
M step we optimize weights ~w to fit πu-s.

II. 2-PHASE BOOTSTRAP

Phase 1: Classify users into positives P and
negatives N using significance testing (NHST):

H0 : λiu
u = λ0

u(t) vs. H1 : λiu
u = λ1

u(t)

with log-likelihood ratio (LLR) test statistic
and virtual badges bootstrapping to estimate
the test statistic distribution under H0

(=simulate badges at b′u 6= bu to get FLLR′ ).
Phase 2: To refine classification results, per-
form clustering with Gaussian mixtures in
covariates space using Dirichlet hyperpriors,
different for each user group G ∈ {N ,P}:

~πG ∼ Dirichlet(α0
G, ..., α

K
G )

and employ results from Phase 1:

αc
G =


σ |P|·FPR
|C0| if c ∈ C0 ∧G = P

σ |P|·(1−FPR)
|C0| if c ∈ C1 ∧G = P

σ |N|·(1−FNR)
|C1| if c ∈ C0 ∧G = N

σ |N|·FNR
|C1| if c ∈ C1 ∧G = N

– FPR/FNR=false positives/negatives rate,
– C0/C1=clusters assigned iu = 0/iu = 1,
– σ=a parameter weighting priors strength.

NOTATION
User u ∈ U in context of the badge b can be
represented by a tuple:

(su
↑

start/eligibility

,

end/censoring
↓
eu, ~xu

↑
user features

,

action times
↓

{tu}, bu
↑

badge awarding

,

badge influence
↓

iu),

According to the latent variable iu, two
user types can be distinguished:

→ iu = 0: user not attracted by the badge
→ iu = 1: user attracted by the badge

DATASET & BADGES

We used a StackOver-
flow.com dataset, that con-
tains timestamped events
from between 07/2008 and
09/2014 and some basic

information about users:
– user age and location
– total number of user page views,

posted comments, and votes
We demonstrate the effectiveness of the pro-
posed approaches for two threshold badges:

– Research Assistant: awarded to users
who edited at least 50 wiki sites de-
scribing tags (wiki tag edits). Users
with reputation 1500 or higher can per-
form these actions.

– Copy Editor: awarded to users who per-
formed a total of 500 post (e.g., ques-
tion or answer) edits. Users with repu-
tation 100 or higher can perform these
actions.

SYNTHETIC DATA RESULTS
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We studied the performance (AUC) of the
methods for varying badge impacts, user
clusterizations, and in the presence of the
global trend in users’ activeness levels, find-
ing that:
– 2-phase bootstrap is the best method in most
of the cases,
– Poisson processes clustering degradates the
least when the global trend is imposed,
– Class imbalance has a low impact on the
performance of the methods.

STACKOVERFLOW.COM RESULTS
Poisson clustering
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– The classification results from differ-
ent methods agree to a high degree.
– Results suggest that only about half
of the users intentionally performed
actions needed to receive the badge.
– Features derived from location
best discriminate between classes, for
example, users from USA receive
badges more often by chance.


