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Goal: Improving Variational Approximations for Predictive Tasks

Modify the posterior approximation to improve given predictive utility
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I Why: The posterior distribution is sufficient for making optimal decisions in down-stream tasks, but approximate posteriors are not
I What: We calibrate variational approximations to improve decisions, by accounting for the decision task already during inference
I Outcome: First practical solution for prediction tasks with continuous utilities, with systematic improvement in expected utility

Preliminaries
Bayesian Decision Theory
I Posterior p(θ|D) sufficient for optimal decisions hp
I Maximize the gain [1]

Gu(h) =
∫

p(θ|D)ũ(θ, h)dθ,
where ũ(θ, h) is the utility

I For predictive problems ũ(θ, h) =
∫
p(y|θ,D)u(y, h)dy

I Closed-form decisions available for some utilities

Variational Inference
I Approximate the posterior p(θ|D) with qλ(θ) parameterized by λ
I Maximize a lower bound LVI(λ) for the marginal log-likelihood

log p(D) ≥
∫

qλ(θ) log
p(D, θ)
qλ(θ)

dθ =: LVI(λ)

I Gradient-based optimization via reparameterization of the approximation and
Monte Carlo integration

Loss Calibrated Variational Inference – LCVI
General Framework
Bound the logarithmic gain using Jensen’s inequality [2]

log Gu(h) ≥ LVI(λ) + Eq[log

∫
p(y|θ,D)u(y, h)dy]︸ ︷︷ ︸

U(λ,h)

=: LLCVI(λ, h)

I Reparameterization of both the approximation qλ(θ) [3] and the predictive
distribution p(y|θ,D)

I Joint gradient-based optimization of h and λ
I Calibration maximized for utilities with infy,h u(y, h) = 0

Utilities and Losses
I Losses `(y, h) need to be first converted into utilities u(y, h)
I Problem: u(y, h) = M− `(y, h) does not change optimal decisions, but requires

M = supy,h `(y, h). Large M reduces calibration
I Solutions:
1. Linearize u(y, h) and use Mq that is the qth quantile of the loss distribution
2. Use exp

(
−`(y,h)

Mq

)
to approximately retain the decisions

Experiments
I Bayesian matrix factorization on the Last.fm dataset
I We measure empirical risk reduction on test data

J =
ERVI − ERLCVI

ERVI
, ERALG =

1
|Dtest|

∑
i∈[Dtest]

`(yi, hALG
i ).
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LCVI outperforms VI on different losses

0 5000 10000 15000 20000
Time [s]

0

2

4

6

E
m

pi
ri

ca
lR

is
k

R
ed

uc
tio

n
(I

)[
%

]

joint optimization
Bayes estimator
num (10 samples)
num (100 samples)

Joint optimization achieves better
results than alternating optimization
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LCVI changes the decisions in a
non-trivial manner
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Mq = 70% quantile achieves optimal
calibration
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