

Variational Bayesian Decision-making for Continuous Utilities

Tomasz Kuśmierczyk Joseph Sakaya Arto Klami

Helsinki Institute for Information Technology HIIT Department of Computer Science, University of Helsinki

Goal: Improving Variational Approximations for Predictive Tasks

Modify the posterior approximation

Approximate Posterior Densities

improve given predictive utility

► Why: The posterior distribution is sufficient for making optimal decisions in down-stream tasks, but approximate posteriors are not

► What: We calibrate variational approximations to improve decisions, by accounting for the decision task already during inference

latent variables

▶ Outcome: First practical solution for prediction tasks with continuous utilities, with systematic improvement in expected utility

Preliminaries

Bayesian Decision Theory

- ▶ Posterior $p(\theta|\mathcal{D})$ sufficient for optimal decisions h_{D}
- ► Maximize the *gain* [1]

$$G_{u}(h) = \int p(\theta|\mathcal{D})\tilde{u}(\theta,h)d\theta,$$

where $\tilde{u}(\theta, h)$ is the utility

- ► For predictive problems $\tilde{u}(\theta,h) = \int p(y|\theta,\mathcal{D})u(y,h)dy$
- ► Closed-form decisions available for some utilities

Variational Inference

- ▶ Approximate the posterior $p(\theta|\mathcal{D})$ with $q_{\lambda}(\theta)$ parameterized by λ
- ▶ Maximize a lower bound $\mathcal{L}_{VI}(\lambda)$ for the marginal log-likelihood

$$\log p(\mathcal{D}) \geq \int q_{\lambda}(heta) \log rac{p(\mathcal{D}, heta)}{q_{\lambda}(heta)} \, d heta =: \mathcal{L}_{\mathsf{VI}}(\lambda)$$

Gradient-based optimization via reparameterization of the approximation and Monte Carlo integration

Loss Calibrated Variational Inference - LCVI

General Framework

Bound the logarithmic gain using Jensen's inequality [2]

$$\log \mathcal{G}_{u}(h) \geq \mathcal{L}_{VI}(\lambda) + \mathbb{E}_{q}[\log \int p(y|\theta, \mathcal{D})u(y, h)dy] =: \mathcal{L}_{LCVI}(\lambda, h)$$

$$\mathbb{U}(\lambda, h)$$

- ▶ Reparameterization of both the approximation $q_{\lambda}(\theta)$ [3] and the predictive distribution $p(y|\theta, \mathcal{D})$
- ▶ Joint gradient-based optimization of h and λ
- ► Calibration maximized for utilities with $\inf_{v,h} u(y,h) = 0$

Utilities and Losses

- ▶ Losses $\ell(y,h)$ need to be first converted into utilities u(y,h)
- ▶ Problem: $u(y,h) = M \ell(y,h)$ does not change optimal decisions, but requires $M = \sup_{y,h} \ell(y,h)$. Large M reduces calibration
- Solutions:
- 1. Linearize u(y,h) and use M_q that is the qth quantile of the loss distribution
- 2. Use exp $\left(-\frac{\ell(y,h)}{M_a}\right)$ to approximately retain the decisions

Experiments

- ► Bayesian matrix factorization on the *Last.fm* dataset
- ► We measure empirical risk reduction on test data

$$\mathcal{J} = rac{\mathcal{ER}_{ extsf{VI}} - \mathcal{ER}_{ extsf{LCVI}}}{\mathcal{ER}_{ extsf{VI}}}, \quad \mathcal{ER}_{ extsf{ALG}} = rac{1}{|\mathcal{D}_{ extsf{test}}|} \sum_{i \in [\mathcal{D}_{ extsf{test}}]} \ell(y_i, h_i^{ALG}).$$

LCVI outperforms VI on different losses

LCVI changes the decisions in a non-trivial manner

Joint optimization achieves better results than alternating optimization

 $M_q = 70\%$ quantile achieves optimal calibration

References

- [1] James O Berger. Statistical Decision Theory and Bayesian Analysis; 2nd edition. Springer Series in Statistics. Springer, New York, 1985.
- [2] Simon Lacoste-Julien, Ferenc Huszár, and Zoubin Ghahramani. Approximate inference for the loss-calibrated Bayesian. In ICML, 2011.
- [3] Adam D Cobb, Stephen J Roberts, and Yarin Gal. Loss-calibrated Approximate Inference in Bayesian Neural Networks. In ICML Workshop on Theory of Deep Learning workshop, 2018.