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Modify the posterior approximation to improve given predictive utility
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» Why: The posterior distribution is sufficient for making optimal decisions in down-stream tasks, but approximate posteriors are not
» What: We calibrate variational approximations to improve decisions, by accounting for the decision task already during inference
» Outcome: First practical solution for prediction tasks with continuous utilities, with systematic improvement in expected utility

Preliminaries

Bayesian Decision Theory

» Posterior p(6|D) sufficient for optimal decisions h,
» Maximize the gain [1]

Gu(h) = / p(6D)ii(6, h)db,

where u(0, h) is the utility
» For predictive problems 4(0,h) = [ p(y|0, D)u(y, h)dy
» Closed-form decisions available for some utilities

Variational Inference
» Approximate the posterior p(8|D) with g, (#) parameterized by A

» Maximize a lower bound Ly,(\) for the marginal log-likelihood

logp(D) > /qA(Q) log p((]i)(:;) do =: Lyi(\)

» Gradient-based optimization via reparameterization of the approximation and
Monte Carlo integration

Loss Calibrated Variational Inference - LCVI

General Framework
Bound the logarithmic gain using Jensen’s inequality [2]

o8 Gulh) > Lu(A) + Eqllog [ p(y19. D)uly. h)ay] = Licu(x.h)
U(Xh)
» Reparameterization of both the approximation g,(6) [3] and the predictive
distribution p(y|0, D)
» Joint gradient-based optimization of h and \
» Calibration maximized for utilities with inf, , u(y, h) = 0

Utilities and Losses

» Losses /(y, h) need to be first converted into utilities u(y, h)

» Problem: u(y,h) = M — /(y, h) does not change optimal decisions, but requires
M = sup, , £(y, h). Large M reduces calibration

» Solutions:
1. Linearize u(y, h) and use M that is the gth quantile of the loss distribution

2. Use exp ( g%’:)) to approximately retain the decisions
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» Bayesian matrix factorization on the Last.fm dataset
» We measure empirical risk reduction on test data
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LCVI outperforms VI on different losses  Joint optimization achieves better

results than alternating optimization
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LCVI changes the decisions in a
non-trivial manner
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M, = 70% quantile achieves optimal
calibration




