Empirical Risk Reduction (I) [%]

Goal: Improving Variational Approximations for Predictive Tasks

- Why: The posterior distribution is sufficient for making optimal decisions in down-stream tasks, but approximate posteriors are not.
- What: We calibrate variational approximations to improve decisions, by accounting for the decision task already during inference.
- Outcome: First practical solution for prediction tasks with continuous utilities, with systematic improvement in expected utility.

Preliminaries

Bayesian Decision Theory
- Posterior \(p(\theta | D) \) sufficient for optimal decisions \(h_{\theta} \).
- Maximize the gain \(J \)

\[J = \int p(\theta | D) \hat{u}(\theta, h) d\theta \]

where \(\hat{u}(\theta, h) \) is the utility.
- For predictive problems \(\hat{u}(\theta, h) = \int p(y|\theta, D) u(y, h) dy \).
- Closed-forms available for some utilities.

Variational Inference
- Approximate the posterior \(p(\theta | D) \) with \(q(\theta | \lambda) \) parameterized by \(\lambda \).
- Maximize a lower bound \(\mathbb{E}_q \mathbb{L}_\lambda(\lambda) \) for the marginal log-likelihood \(\log p(D) \)

\[\log p(D) \geq \int q(\theta) \log \frac{p(D, \theta)}{q(\theta)} d\theta = \mathbb{L}_\lambda(\lambda) \]
- Gradient-based optimization via reparameterization of the approximation and Monte Carlo integration.

Loss Calibrated Variational Inference – LCVI

General Framework
Bound the logarithmic gain using Jensen's inequality [2]

\[\mathbb{E}_q [\log p(y|\theta, D)u(y, h)dy] = : \mathbb{L}_{LCVI}(\lambda, h) \]

- Reparameterization of both the approximation \(q(\theta | \lambda) \) and the predictive distribution \(p(y|\theta, D) \).
- Joint gradient-based optimization of \(h \) and \(\lambda \).
- Calibration maximized for utilities with \(\int u_{\lambda}u(y, h) = 0 \).

Utilities and Losses
- Losses \(l(y, h) \) need to be first converted into utilities \(u(y, h) \).
- Problem: \(u(y, h) = M - l(y, h) \) does not change optimal decisions, but requires \(M = \sup_y u(y, h) \). Large \(M \) reduces calibration.

- Solutions:
 1. Linearize \(u(y, h) \) and use \(M_q \) that is the \(q \)th quantile of the loss distribution
 2. Use \(exp(-\frac{M_q}{M_q}) \) to approximately retain the decisions.

Experiments
- Bayesian matrix factorization on the Last.fm dataset.
- We measure empirical risk reduction on test data.

\[J = \frac{ER_{\text{ALG}} - ER_{\text{LCVI}}}{ER_{\theta}} \]

- LCVI outperforms VI on different losses.
- Joint optimization achieves better results than alternating optimization.

References