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» Context: Making predictions with Bayesian models.

» Problem: Approximate posteriors lead to sub-optimal
decisions (=predictions) in down-stream tasks.

» Solution: Correct predictions based on the (approximate)
posterior predictive distributions.

< > » Advantages: Retain speed of approximate inference and
q(y) interpretability of Bayesian models.
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Our solution: Neural Network mapping predictive

distributions to decisions h to minimize Empirical Risk

1. Train Bayesian model and obtain quantiles from
(approximate) predictive distributions q(y)

2. Train parametric Decision Maker (DM) with g(y):
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Model Maker h=1(q(y),w)
— 3. Deploy Decision Maker along with Bayesian Model
Decision

Traditional Bayesian Decision Theory Predictive Decision Theory

Predictions from Bayesian Models » Decision belief distribution [2] of an individual data point y:
1. Find posterior p(6|D) p(hly) o e ¥)p(h)™

2. Make decisions h minimizing the expected loss, i.e., risk [1]; » Decisions for different y can be tied via Decision Maker to obtain

/P {y,h)dy Bayesian update rule for belief distribution of w: p(w|y) oc e ““Y)p(w)™
» Bayesian update rule for a collection of N data instances leads to the

where p(y) := [ p(6|D)p(y |6’ D)d# and / is a loss of choice. log-posterior (=training objective)°

For example, squared loss |mpI|es h = mean of p(y).

log p(w|D) oc——Zﬁ ), ¥n)+ Alogp(w) +C
Challenges regularization
» Approximation q(8) =~ p(¢|D) is often used instead empirical risk
> Decisions made with q(y) instead of p(y) are sub-optimal » Prior p(w) keeps predictions close to decisions obtained with g(y).

» Sub-optimal decisions do not minimize the true risk
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DM improves over the g-optimal baseline DM corrects prediction errors due to Regularization prevents DM from ignoring Worse representation of g(y) (fewer
(black line) and competing approaches [3]. failure of posterior fitting. predictions of the underlying linear model. quantiles) affects prediction quality.
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