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I Context: Making predictions with Bayesian models.
I Problem: Approximate posteriors lead to sub-optimal

decisions (=predictions) in down-stream tasks.
I Solution: Correct predictions based on the (approximate)

posterior predictive distributions.
I Advantages: Retain speed of approximate inference and

interpretability of Bayesian models.

Our solution: Neural Network mapping predictive
distributions to decisions h to minimize Empirical Risk

1. Train Bayesian model and obtain quantiles from
(approximate) predictive distributions q(y)

2. Train parametric Decision Maker (DM) with q(y):
h = f(q(y), ω)

3. Deploy Decision Maker along with Bayesian Model

Traditional Bayesian Decision Theory

Predictions from Bayesian Models
1. Find posterior p(θ|D)
2. Make decisions h minimizing the expected loss, i.e., risk [1]:

R(h) =
∫

p(y)`(y, h)dy

where p(y) :=
∫
p(θ|D)p(y|θ,D)dθ and ` is a loss of choice.

For example, squared loss implies h = mean of p(y).

Challenges
I Approximation q(θ) ≈ p(θ|D) is often used instead
I Decisions made with q(y) instead of p(y) are sub-optimal
I Sub-optimal decisions do not minimize the true risk

Predictive Decision Theory

I Decision belief distribution [2] of an individual data point y:
p(h|y) ∝ e−`(h,y)p(h)λ1

I Decisions for different y can be tied via Decision Maker to obtain
Bayesian update rule for belief distribution of ω: p(ω|y) ∝ e−`′(ω,y)p(ω)λ1

I Bayesian update rule for a collection of N data instances leads to the
log-posterior (=training objective):

log p(ω|D) ∝ − 1
N

N∑
n=1

`( f(q(yn), ω), yn)︸ ︷︷ ︸
empirical risk

+ λ log p(ω)︸ ︷︷ ︸
regularization

+C

I Prior p(ω) keeps predictions close to decisions obtained with q(y).

Experiments
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DM improves over the q-optimal baseline
(black line) and competing approaches [3].
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DM corrects prediction errors due to
failure of posterior fitting.
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Regularization prevents DM from ignoring
predictions of the underlying linear model.
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Worse representation of q(y) (fewer
quantiles) affects prediction quality.
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