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Preface

Broadly speaking, you can divide the history of computers into four periods: the mainframe, the
mini, the microprocessor, and the modern post-microprocessor. The mainframe era was charac-
terized by computers that required large buildings and teams of technicians and operators to keep
them going. More often than not, both academics and students had little direct contact with the
mainframe—you handed a deck of punched cards to an operator and waited for the output to ap-
pear hours later. During the mainfame era, academics concentrated on languages and compilers,
algorithms, and operating systems.

The minicomputer era put computers in the hands of students and academics, because university
departments could now buy their own minis. As minicomputers were not as complex as main-
frames and because students could get direct hands-on experience, many departments of computer
science and electronic engineering taught students how to program in the native language of the
computer—assembly language. In those days, the mid 1970s, assembly language programming
was used to teach both the control of I/O devices, and the writing of programs (i.e., assembly
language was taught rather like high level languages). The explosion of computer software had
not taken place, and if you wanted software you had to write it yourself.

The late 1970s saw the introduction of the microprocessor. For the first time, each student was
able to access a real computer. Unfortunately, microprocessors appeared before the introduction
of low-cost memory (both primary and secondary). Students had to program microprocessors
in assembly language because the only storage mechanism was often a ROM with just enough
capacity to hold a simple single-pass assembler.

The advent of the low-cost microprocessor system (usually on a single board) ensured that virtually
every student took a course on assembly language. Even today, most courses in computer science
include a module on computer architecture and organization, and teaching students to write
programs in assembly language forces them to understand the computer’s architecture. However,
some computer scientists who had been educated during the mainframe era were unhappy with
the microprocessor, because they felt that the 8-bit microprocessor was a retrograde step—its
architecture was far more primitive than the mainframes they had studied in the 1960s.

The 1990s is the post-microprocessor era. Today’s personal computers have more power and
storage capacity than many of yesterday’s mainframes, and they have a range of powerful software
tools that were undreamed of in the 1970s. Moreover, the computer science curriculum of the
1990s has exploded. In 1970 a student could be expected to be familiar with all field of computer
science. Today, a student can be expected only to browse through the highlights.

The availability of high-performance hardware and the drive to include more and more new ma-
terial in the curriculum, has put pressure on academics to justify what they teach. In particular,
many are questioning the need for courses on assembly language.

If you regard computer science as being primarily concerned with the use of the computer, you
can argue that assembly language is an irrelevance. Does the surgeon study metallurgy in order
to understand how a scalpel operates? Does the pilot study thermodynamics to understand how
a jet engine operates? Does the news reader study electronics to understand how the camera
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operates? The answer to all these questions is “no”. So why should we inflict assembly language
and computer architecture on the student?

First, education is not the same as training. The student of computer science is not simply being
trained to use a number of computer packages. A university course leading to a degree should
also cover the history and the theoretical basis for the subject. Without a knowledge of computer
architecture, the computer scientist cannot understand how computers have developed and what
they are capable of.

Is assembly language today the same as assembly language yesterday?

Two factors have influenced the way in which we teach assembly language—one is the way in which
microprocessors have changed, and the other is the use to which assembly language teaching is
put. Over the years microprocessors have become more and more complex, with the result that
the architecture and assembly language of a modern state-of-the-art microprocessor is radically
different to that of an 8-bit machine of the late 1970s. When we first taught assembly language in
the 1970s and early 1980s, we did it to demonstrate how computers operated and to give students
hands-on experience of a computer. Since all students either have their own computer or have ac-
cess to a computer lab, this role of the single-board computer is now obsolete. Moreover, assembly
language programming once attempted to ape high-level language programming— students were
taught algorithms such as sorting and searching in assembly language, as if assembly language
were no more than the (desperately) poor person’s C.

The argument for teaching assembly language programming today can be divided into two com-
ponents: the underpinning of computer architecture and the underpinning of computer software.

Assembly language teaches how a computer works at the machine (i.e., register) level. It is there-
fore necessary to teach assembly language to all those who might later be involved in computer
architecture—either by specifying computers for a particular application, or by designing new
architectures. Moreover, the von Neumann machine’s sequential nature teaches students the limi-
tation of conventional architectures and, indirectly, leads them on to unconventional architectures
(parallel processors, Harvard architectures, data flow computers, and even neural networks).

It is probably in the realm of software that you can most easily build a case for the teaching of
assembly language. During a student’s career, he or she will encounter a lot of abstract concepts in
subjects ranging from programming languages, to operating systems, to real-time programming,
to AIl. The foundation of many of these concepts lies in assembly language programming and
computer architecture. You might even say that assembly language provides bottom-up support
for the top-down methodology we teach in high-level languages. Consider some of the following
examples (taken from the teaching of Advanced RISC Machines Ltd (ARM) assembly language).

Data types
Students come across data types in high-level languages and the effects of strong and weak
data typing. Teaching an assembly language that can operate on bit, byte, word and long
word operands helps students understand data types. Moreover, the ability to perform any
type of assembly language operation on any type of data structure demonstrates the need
for strong typing.

Addressing modes

A vital component of assembly language teaching is addressing modes (literal, direct, and
indirect). The student learns how pointers function and how pointers are manipulated. This
aspect is particularly important if the student is to become a C programmer. Because an
assembly language is unencumbered by data types, the students’ view of pointers is much
simplified by an assembly language. The ARM has complex addressing modes that support
direct and indirect addressing, generated jump tables and handling of unknown memory
offsets.
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The stack and subroutines
How procedures are called, and parameters passed and returned from procedures. By using
an assembly language you can readily teach the passing of parameters by wvalue and by
reference. The use of local variables and re-entrant programming can also be taught. This
supports the teaching of task switching kernels in both operating systems and real-time
programming.

Recursion
The recursive calling of subroutines often causes a student problems. You can use an assem-
bly language, together with a suitable system with a tracing facility, to demonstrate how
recursion operates. The student can actually observe how the stack grows as procedures are
called.

Run-time support for high-level languages
A high-performance processor like the ARM provides facilities that support run-time check-
ing in high-level languages. For example, the programming techniques document lists a
series of programs that interface with ’C’ and provide run-time checking for errors such as
an attempt to divide a number by zero.

Protected-mode operation
Members of the ARM family operate in either a priviledge mode or a user mode. The
operating system operates in the priviledge mode and all user (applications) programs run in
the user mode. This mechanism can be used to construct secure or protected environments in
which the effects of an error in one application can be prevented from harming the operating
system (or other applications).

Input-output
Many high-level languages make it difficult to access I/O ports and devices directly. By
using an assembly language we can teach students how to write device drivers and how to
control interfaces. Most real interfaces are still programmed at the machine level by accessing
registers within them.

All these topics can, of course, be taught in the appropriate courses (e.g., high-level languages,
operating systems). However, by teaching them in an assembly language course, they pave the
way for future studies, and also show the student exactly what is happening within the machine.

Conclusion

A strong case can be made for the continued teaching of assembly language within the computer
science curriculum. However, an assembly language cannot be taught just as if it were another
general-purpose programming language as it was once taught ten years ago. Perhaps more than
any other component of the computer science curriculum, teaching an assembly language supports
a wide range of topics at the heart of computer science. An assembly language should not be used
just to illustrate algorithms, but to demonstrate what is actually happening inside the computer.
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1 Introduction

A computer program is ultimately a series of numbers and therefore has very little meaning to a
human being. In this chapter we will discuss the levels of human-like language in which a computer
program may be expressed. We will also discuss the reasons for and uses of assembly language.

1.1 The Meaning of Instructions

The instruction set of a microprocessor is the set of binary inputs that produce defined actions
during an instruction cycle. An instruction set is to a microprocessor what a function table is to a
logic device such as a gate, adder, or shift register. Of course, the actions that the microprocessor
performs in response to its instruction inputs are far more complex than the actions that logic
devices perform in response to their inputs.

1.1.1 Binary Instructions

An instruction is a binary digit pattern — it must be available at the data inputs to the micropro-
cessor at the proper time in order to be interpreted as an instruction. For example, when the ARM
receives the binary pattern 111000000100 as the input during an instruction fetch operation, the
pattern means subtract. Similary the microinstruction 111000001000 means add. Thus the 32
bit pattern 11100000010011101100000000001111 means:

“Subtract R15 from R14 and put the answer in R12.”

The microprocessor (like any other computer) only recognises binary patterns as instructions or
data; it does not recognise characters or octal, decimal, or hexadecimal numbers.

1.2 A Computer Program

A program is a series of instructions that causes a computer to perform a particular task.

Actually, a computer program includes more than instructions, it also contains the data and the
memory addresses that the microprocessor needs to accomplish the tasks defined by the instruc-
tions. Clearly, if the microprocessor is to perform an addition, it must have two numbers to add
and a place to put the result. The computer program must determine the sources of the data and
the destination of the result as well as the operation to be performed.

All microprocessors execute instructions sequentially unless an instruction changes the order of
execution or halts the processor. That is, the processor gets its next instruction from the next
higher memory address unless the current instruction specifically directs it to do otherwise.

Ultimately, every program is a set of binary numbers. For example, this is a snippet of an ARM
program that adds the contents of memory locations 809414 and 8098;¢ and places the result in
memory location 809C¢:
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11100101100111110001000000010000
11100101100111110001000000001000
11100000100000010101000000000000
11100101100011110101000000001000

This is a machine language, or object, program. If this program were entered into the memory of
an ARM-based microcomputer, the microcomputer would be able to execute it directly.

1.3 The Binary Programming Problem

There are many difficulties associated with creating programs as object, or binary machine lan-
guage, programs. These are some of the problems:

e The programs are difficult to understand or debug. (Binary numbers all look the same,
particularly after you have looked at them for a few hours.)

e The programs do not describe the task which you want the computer to perform in anything
resembling a human-readable format.

e The programs are long and tiresome to write.

e The programmer often makes careless errors that are very difficult to locate and correct.

For example, the following version of the addition object program contains a single bit error. Try
to find it:

11100101100111110001000000010000
11100101100111110001000000001000
11100000100000010101000000000000
11100110100011110101000000001000

Although the computer handles binary numbers with ease, people do not. People find binary
programs long, tiresome, confusing, and meaningless. Eventually, a programmer may start re-
membering some of the binary codes, but such effort should be spent more productively.

1.4 Using Octal or Hexadecimal

We can improve the situation somewhat by writing instructions using octal or hexadecimal num-
bers, rather than binary. We will use hexadecimal numbers because they are shorter, and because
they are the standard for the microprocessor industry. Table defines the hexadecimal digits
and their binary equivalents. The ARM program to add two numbers now becomes:

E59F1010
E59£0008
E0815000
E58F5008

At the very least, the hexadecimal version is shorter to write and not quite so tiring to examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The erroneous version of
the addition program, in hexadecimal form, becomes:
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Hexadecimal Binary Decimal
Digit Equivalent Equivalent

0 0000 0

1 0001 1

2 0010 2

0011

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

(@] 1100 12

D 1101 1

E 1110 14

F 1111 15

Table 1.1: Hexadecimal Conversion Table

E59F1010
E59£0008
E0815000
E68F5008

The mistake is far more obvious.

The hexadecimal version of the program is still difficult to read or understand; for example, it
does not distinguish operations from data or addresses, nor does the program listing provide any
suggestion as to what the program does. What does 3038 or 31C0O mean? Memorising a card full
of codes is hardly an appetising proposition. Furthermore, the codes will be entirely different for
a different microprocessor and the program will require a large amount of documentation.

1.5 Instruction Code Mnemonics

An obvious programming improvement is to assign a name to each instruction code. The instruc-
tion code name is called a “mnemonic” or memory jogger.

In fact, all microprocessor manufacturers provide a set of mnemonics for the microprocessor in-
struction set (they cannot remember hexadecimal codes either). You do not have to abide by the
manufacturer’s mnemonics; there is nothing sacred about them. However, they are standard for
a given microprocessor, and therefore understood by all users. These are the instruction codes
that you will find in manuals, cards, books, articles, and programs. The problem with selecting
instruction mnemonics is that not all instructions have “obvious” names. Some instructions do
(for example, ADD, AND, ORR), others have obvious contractions (such as SUB for subtraction, EOR
for exclusive-OR), while still others have neither. The result is such mnemonics as BIC, STMIA,
and even MRS. Most manufacturers come up with some reasonable names and some hopeless ones.
However, users who devise their own mnemonics rarely do much better.

Along with the instruction mnemonics, the manufacturer will usually assign names to the CPU
registers. As with the instruction names, some register names are obvious (such as A for Accumu-
lator) while others may have only historical significance. Again, we will use the manufacturer’s
suggestions simply to promote standardisation.

If we use standard ARM instruction and register mnemonics, as defined by Advanced RISC Ma-
chines, our ARM addition program becomes:
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LDR R1, numl
LDR RO, num2
ADD R5, R1, RO
STR R5, num3

The program is still far from obvious, but at least some parts are comprehensible. ADD is a
considerable improvement over E59F. The LDR mnemonic does suggest loading data into a register
or memory location. We now see that some parts of the program are operations and others are
addresses. Such a program is an assembly language program.

1.6 The Assembler Program

How do we get the assembly language program into the computer? We have to translate it, either
into hexadecimal or into binary numbers. You can translate an assembly language program by
hand, instruction by instruction. This is called hand assembly.

The following table illustrates the hand assembly of the addition program:

Instruction Mnemonic  Register/Memory Location —Hexadecimal Equivalent

LDR R1, numi E59F1010
LDR RO, num2 E59F0008
ADD R5, R1, RO E0815000
STR R5, num3 E58F5008

Hand assembly is a rote task which is uninteresting, repetitive, and subject to numerous minor
errors. Picking the wrong line, transposing digits, omitting instructions, and misreading the codes
are only a few of the mistakes that you may make. Most microprocessors complicate the task even
further by having instructions with different lengths. Some instructions are one word long while
others may be two or three. Some instructions require data in the second and third words; others
require memory addresses, register numbers, or who knows what?

Assembly is a rote task that we can assign to the microcomputer. The microcomputer never
makes any mistakes when translating codes; it always knows how many words and what format
each instruction requires. The program that does this job is an “assembler”” The assembler
program translates a user program, or “source” program written with mnemonics, into a machine
language program, or “object” program, which the microcomputer can execute. The assembler’s
input is a source program and its output is an object program.

Assemblers have their own rules that you must learn. These include the use of certain markers
(such as spaces, commas, semicolons, or colons) in appropriate places, correct spelling, the proper
control of information, and perhaps even the correct placement of names and numbers. These
rules are usually simple and can be learned quickly.

1.6.1 Additional Features of Assemblers

Early assemblers did little more than translate the mnemonic names of instructions and registers
into their binary equivalents. However, most assemblers now provide such additional features as:

e Allowing the user to assign names to memory locations, input and output devices, and even
sequences of instructions

e Converting data or addresses from various number systems (for example, decimal or hex-
adecimal) to binary and converting characters into their ASCII or EBCDIC binary codes
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e Performing some arithmetic as part of the assembly process
e Telling the loader program where in memory parts of the program or data should be placed

e Allowing the user to assign areas of memory as temporary data storage and to place fixed
data in areas of program memory

e Providing the information required to include standard programs from program libraries, or
programs written at some other time, in the current program

e Allowing the user to control the format of the program listing and the input and output
devices employed

1.6.2 Choosing an Assembler

All of these features, of course, involve additional cost and memory. Microcomputers generally
have much simpler assemblers than do larger computers, but the tendency is always for the size of
assemblers to increase. You will often have a choice of assemblers. The important criterion is not
how many off-beat features the assembler has, but rather how convenient it is to use in normal
practice.

1.7 Disadwvantages of Assembly Language

The assembler does not solve all the problems of programming. One problem is the tremendous gap
between the microcomputer instruction set and the tasks which the microcomputer is to perform.
Computer instructions tend to do things like add the contents of two registers, shift the contents
of the Accumulator one bit, or place a new value in the Program Counter. On the other hand, a
user generally wants a microcomputer to do something like print a number, look for and react to
a particular command from a teletypewriter, or activate a relay at the proper time. An assembly
language programmer must translate such tasks into a sequence of simple computer instructions.
The translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have detailed knowledge of
the particular microcomputer that you are using. You must know what registers and instructions
the microcomputers has, precisely how the instructions affect the various registers, what addressing
methods the computer uses, and a mass of other information. None of this information is relevant
to the task which the microcomputer must ultimately perform.

In addition, assembly language programs are not portable. Each microcomputer has its own
assembly language which reflects its own architecture. An assembly language program written for
the ARM will not run on a 486, Pentium, or Z8000 microprocessor. For example, the addition
program written for the Z8000 would be:

LD RO, %6000
ADD RO, %6002
LD  %6004,RO

The lack of portability not only means that you will not be able to use your assembly language
program on a different microcomputer, but also that you will not be able to use any programs that
were not specifically written for the microcomputer you are using. This is a particular drawback
for new microcomputers, since few assembly language programs exist for them. The result, too
frequently, is that you are on your own. If you need a program to perform a particular task, you
are not likely to find it in the small program libraries that most manufacturers provide. Nor are
you likely to find it in an archive, journal article, or someone’s old program File. You will probably
have to write it yourself.
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1.8 High-Level Languages

The solution to many of the difficulties associated with assembly language programs is to use,
insted, high-level or procedure-oriented langauges. Such languages allow you to describe tasks in
forms that are problem-oriented rather than computer-oriented. Each statement in a high-level
language performs a recognisable function; it will generally correspond to many assembly language
instruction. A program called a compiler translates the high-level language source program into
object code or machine language instructions.

Many different hgih-level languages exist for different types of tasks. If, for exampe, you can
express what you want the computer to do in algebraic notation, you can write your FORTRAN
(Formula Translation Language), the oldest of the high-level languages. Now, if you want to add
two numbers, you just tell the computer:

sum = numl + num2;

That is a lot simpler (and shorter) than either the equivalent machine language program or the
equivalent assembly language program. Other high-level languages include COBOL (for business
applications), BASIC (a cut down version of FORTRAN designed to prototype ideas before codeing
them in full), C (a systems-programming language), C++ and JAVA (object-orientated general
development languages).

1.8.1 Advantages of High-Level Languages

Clearly, high-level languages make program easier and faster to write. A common estimate is
that a programmer can write a program about ten times as fast in a high-level langauge as in
assembly language. That is just writing the program; it does not include problem definition,
program design, debugging testing or documentation, all of which become simpler and faster. The
high-level language program is, for instance, partly self-documenting. Even if you do not know
FORTRAN, you could probably tell what the statement illustrated above does.

Machine Independence

High-level languages solve many other problems associated with assembly language programming.
The high-level language has its own syntax (usually defined by an international standard). The
language does not mention the instruction set, registers, or other features of a particular computer.
The compiler takes care of all such details. Programmers can concentrate on their own tasks; they
do not need a detailed understanding of the underlying CPU architecture — for that matter, they
do not need to know anything about the computer the are programming.

Portability

Programs written in a high-level language are portable — at least, in theory. They will run on
any computer that has a standard compiler for that language.

At the same time, all previous programs written in a high-level language for prior computers and
available to you when programming a new computer. This can mean thousands of programs in
the case of a common language like C.
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1.8.2 Disadvantages of High-Level Languages

If all the good things we have said about high-level languages are true — if you can write programs
faster and make them portable besides — why bother with assebly languages? Who wants to
worry about registers, instruction codes, mnemonics, and all that garbage! As usual, there are
disadvantages that balance the advantages.

Syntax

One obvious problem is that, as with assembly language, you have to learn the “rules” or syntax
of any high-level language you want to use. A high-level langauge has a fairly complicated set of
rules. You will find that it takes a lot of time just to get a program that is syntactically correct
(and even then it probably will not do what you want). A high-level computer language is like
a foreign language. If you have talent, you will get used to the rules and be able to turn out
programs that the compiler will accept. Still, learning the rules and trying to get the program
accepted by the compiler does not contribute directly to doing your job.

Cost of Compilers

Another obvious problem is that you need a compiler to translate program written in a high-level
language into machine language. Compilers are expensive and use a large amount of memory.
While most assemblers occupy only a few KBytes of memory, compilers would occupy far larger
amounts of memory. A compiler could easily require over four times as much memory as an
assembler. So the amount of overhead involved in using the compiler is rather large.

Adapting Tasks to a Language

Furthermore, only some compilers will make the implementation of your task simpler. Each
language has its own target proglem area, for example, FORTRAN is well-suited to problems
that can be expressed as algebraic formulas. If however, your problem is controlling a display
terminal, editing a string of characters, or monitoring an alarm system, your problem cannot
be easily expressed. In fact, formulating the solution in FORTRAN may be more awkward and
more difficult than formulating it in assembly language. The answer is, of course, to use a more
suitable high-level language. Languages specifically designed for tasks such as those mentioned
above do exist — they are called system implementation languages. However, these languages are
less widely used.

Inefficiency

High-level languages do not produce very efficient machine language program. The basic reason
for this is that compilation is an automatic process which is riddled with compromises to allow for
many ranges of possibilities. The compiler works much like a computerised language translator —
sometimes the words are right but the sentence structures are awkward. A simpler compiler connot
know when a variable is no longer being used and can be discarded, when a register should be
used rather than a memory location, or when variables have simple relationships. The experienced
programmer can take advantage of shortcuts to shorten execution time or reduce memory usage.
A few compiler (known as optimizing cmpilers) can also do this, but such compilers are much
larger than regular compilers.
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1.9 Which Lexel Should You Use?

Which language level you use depends on your particulr application. Let us briefly note some of
the factors which may favor particular levels:

1.9.1 Applications for Machine Language

Virtually no one programs in machine language because it wastes human time and is difficult to
document. An assembler costs very little and greatly reduces programming time.

1.9.2 Applications for Assembly Language

e Limited data processing e Short to moderate-sized programs
e High-volume applications e Application where memory cost is a factor
e Real-Time control applications e Applications involving more input/output

or control than computation

1.9.3 Applications for High-Level Language

e Long programs e Compatibility with similar applications
using larger computers

e Low-volume applications e Applications involing more computation
than input/output or control

e Programs which are expected e Applications where the amout of memory
to undergo many changes required is already very large

e Availability of a specific program in a high-level language which can be used
in the application.

1.9.4 Other Considerations

Many other factors are also important, such as the availability of a large computer for use in
development, experience with particular languages, and compatibility with other applications.

If hardware will ultimately be the largest cost in your application, or if speed is critical, you should
favor assembly language. But be prepared to spend much extra time in software development in
exchange for lower memory costs and higher execution speeds. If software will be the largest cost
in your application, you should favor a high-level language. But be prepared to spend the extra
money required for the supporting hardware and software.

Of course, no one except some theorists will object if you use both assembly and high-level lan-
guages. You can write the program originally in a high-level language and then patch some sections
in assembly language. However, most users prefer not to do this because it can create havoc in
debugging, testing, and documentation.

1.10 Why Learn Assembler?

Given the advance of high-level languages, why do you need to learn assembly language program-
ming? The reasons are:



1.10. WHY LEARN ASSEMBLER? 9

1. Most industrial microcomputer users program in assembly language.

2. Many microcomputer users will continue to program in assembly language since they need
the detailed control that it provides.

3. No suitable high-level language has yet become widely available or standardised.
4. Many application require the efficiency of assembly language.
5. An understanding of assembly language can help in evaluating high-level languages.

6. Almost all microcomputer programmers ultimately find that they need some knowledge of
assembly language, most often to debug programs, write I/O routines, speed up or shorten
critical sections of programs written in high-level languages, utilize or modify operating
system functions, and undertand other people’s programs.

The rest of these notes will deal exclusively with assembler and assembly language programming.
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2 Assemblers

This chapter discusses the functions performed by assemblers, beginning with features common
to most assemblers and proceeding through more elaborate capabilities such as macros and con-
ditional assembly. You may wish to skim this chapter for the present and return to it when you
feel more comfortable with the material.

As we mentioned, today’s assemblers do much more than translate assembly language mnemonics
into binary codes. But we will describe how an assembler handles the translation of mnemonics
before describing additional assembler features. Finally we will explain how assemblers are used.

2.1 Fields

Assembly language instructions (or “statements”) are divided into a number of “fields”.

The operation code field is the only field which can never he empty; it always contains either an
instruction mnemonic or a directive to the assembler, sometimes called a “pseudo-instruction,”
“pseudo-operation,” or “pseudo-op.”

The operand or address field may contain an address or data, or it may be blank.

The comment and label fields are optional. A programmer will assign a label to a statement or
add a comment as a personal convenience: namely, to make the program easier to read and use.

Of course, the assembler must have some way of telling where one field ends and another begins.
Assemblers often require that each field start in a specific column. This is a “fixed format.”
However, fixed formats are inconvenient when the input medium is paper tape; fixed formats are
also a nuisance to programmers. The alternative is a “free format” where the fields may appear
anywhere on the line.

2.1.1 Delimiters

If the assembler cannot use the position on the line to tell the fields apart, it must use something
else. Most assemblers use a special symbol or “delimiter” at the beginning or end of each field.

Label Operation Code Operand or

Field or Mnemonic Addre Comment Field
Field Field
VALUE1 DCW 0x201E ;FIRST VALUE
VALUE2 DCW 0x0774 ;s SECOND VALUE
RESULT DCW 1 ;16-BIT STORAGE FOR ADDITION RESULT
START MOV RO, VALUEL sGET FIRST VALUE
ADD RO, RO, VALUE2 ;ADD SECOND VALUE TO FIRST VALUE
STR RESULT, RO sSTORE RESULT OF ADDITION
NEXT: ? 7 ;NEXT INSTRUCTION

11
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label (whitespace) instruction (whitespace) ; comment

white pace  Between label and operation code, between operation code and ad-
dre , and before an entry in the comment field

comma Between operand in the addre field
a teri k Before an entire line of comment
emicolon Mark the tart of a comment on a line that contain preceding code

Table 2.1: Standard ARM Assembler Delimiters

The most common delimiter is the space character. Commas, periods, semicolons, colons, slashes,
question marks, and other characters that would not otherwise be used in assembly language
programs also may serve as delimiters. The general form of layout for the ARM assembler is:

You will have to exercise a little care with delimiters. Some assemblers are fussy about extra spaces
or the appearance of delimiters in comments or labels. A well-written assembler will handle these
minor problems, but many assemblers are not well-written. Our recommendation is simple: avoid
potential problems if you can. The following rules will help:

e Do not use extra spaces, in particular, do not put spaces after commas that separate
operands, even though the ARM assembler allows you to do this.

e Do not use delimiter characters in names or labels.

e Include standard delimiters even if your assembler does not require them. Then it will be
more likely that your programs are in correct form for another assembler.

2.1.2 Labels

The label field is the first field in an assembly language instruction; it may be blank. If a label
is present, the assembler defines the label as equivalent to the address into which the first byte
of the object code generated for that instruction will be loaded. You may subsequently use the
label as an address or as data in another instruction’s address field. The assembler will replace
the label with the assigned value when creating an object program.

The ARM assembler requires labels to start at the first character of a line. However, some other
assemblers also allow you to have the label start anywhere along a line, in which case you must
use a colon (:) as the delimiter to terminate the label field. Colon delimiters are not used by the
ARM assembler.

Labels are most frequently used in Branch or SWI instructions. These instructions place a new
value in the program counter and so alter the normal sequential execution of instructions. B 15016
means “place the value 15014 in the program counter.” The next instruction to be executed will
be the one in memory location 15016. The instruction B START means “place the value assigned
to the label START in the program counter.” The next instruction to be executed will be the on at
the address corresponding to the label START. Figure 2.1] contains an example.

Why use a label? Here are some reasons:

e A label makes a program location easier to find and remember.

e The label can easily be moved, if required, to change or correct a program. The assembler
will automatically change all instructions that use the label when the program is reassembled.
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A embly language Program

START MOV RO, VALUE1
(Main Program)

BAL  START

When the machine language ver ion of thi program i executed, the in truction
B START cau e the addre of the in truction labeled START to be placed in the
program counter That in truction will then be executed.

Figure 2.1: Assigning and Using a Label

e The assembler can relocate the whole program by adding a constant (a “relocation constant”)
to each address in which a label was used. Thus we can move the program to allow for the
insertion of other programs or simply to rearrange memory.

e The program is easier to use as a library program; that is, it is easier for someone else to
take your program and add it to some totally different program.

e You do not have to figure out memory addresses. Figuring out memory addresses is partic-
ularly difficult with microprocessors which have instructions that vary in length.

You should assign a label to any instruction that you might want to refer to later.

The next question is how to choose a label. The assembler often places some restrictions on the
number of characters (usually 5 or 6), the leading character (often must be a letter), and the
trailing characters (often must be letters, numbers, or one of a few special characters). Beyond
these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e., mnemonic labels. Typical
examples are ADDW in a routine that adds one word into a sum, SRCHETX in a routine that searches
for the ASCII character ETX, or NKEYS for a location in data memory that contains the number of
key entries. Meaningful labels are easier to remember and contribute to program documentation.
Some programmers use a standard format for labels, such as starting with LO000. These labels are
self-sequencing (you can skip a few numbers to permit insertions), but they do not help document
the program.

Some label selection rules will keep you out of trouble. We recommend the following;:

e Do not use labels that are the same as operation codes or other mnemonics. Most assemblers
will not allow this usage; others will, but it is confusing.

e Do not use labels that are longer than the assembler recognises. Assemblers have various
rules, and often ignore some of the characters at the end of a long label.

e Avoid special characters (non-alphabetic and non-numeric) and lower-case letters. Some
assemblers will not permit them; others allow only certain ones. The simplest practice is to
stick to capital letters and numbers.

e Start each label with a letter. Such labels are always acceptable.

e Do not use labels that could be confused with each other. Avoid the letters I, 0, and Z and
the numbers 0, 1, and 2. Also avoid things like XXXX and XXXXX. Assembly programming is
difficult enough without tempting fate or Murphy’s Law.

e When you are not sure if a label is legal, do not use it. You will not get any real benefit
from discovering exactly what the assembler will accept.
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These are recommendations, not rules. You do not have to follow them but don’t blame us if you
waste time on unnecessary problems.

2.2 Operation Codes (Mnemonics)

One main task of the assembler is the translation of mnemonic operation codes into their binary
equivalents. The assembler performs this task using a fixed table much as you would if you were
doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must also
somehow determine how many operands the instruction requires and what type they are. This
may be rather complex — some instructions (like a Stop) have no operands, others (like a Jump
instruction) have one, while still others (like a transfer between registers or a multiple-bit shift)
require two. Some instructions may even allow alternatives; for example, some computers have
instructions (like Shift or Clear) which can either apply to a register in the CPU or to a memory
location. We will not discuss how the assembler makes these distinctions; we will just note that it
must do so.

2.3 Directives

Some assembly language instructions are not directly translated into machine language instruc-
tions. These instructions are directives to the assembler; they assign the program to certain areas
in memory, define symbols, designate areas of memory for data storage, place tables or other fixed
data in memory, allow references to other programs, and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the directive’s mnemonic
in the operation code field, and, if the specified directive requires it, an address or data in the
address field.

The most common directives are:

DEFINE CONSTANT (Data)
EQUATE (Define)

AREA

DEFINE STORAGE (Reserve)

Different assemblers use different names for those operations but their functions are the same.
Housekeeping directives include:

END LIST FORMAT TTL PAGE INCLUDE

We will discuss these pseudo-operations briefly, although their functions are usually obvious.

2.3.1 The DEFINE CONSTANT (Data) Directive

The DEFINE CONSTANT directive allows the programmer to enter fixed data into program
memory. This data may include:
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e Names e Conversion factors

e Messages e Key identifications

e Commands e Subroutine addresses

e Tax tables e Code conversion tables

e Thresholds e Identification patterns

e Test patterns e State transition tables

e Lookup tables e Synchronisation patterns
e Standard forms e Coefficients for equations

e Masking patterns e Character generation patterns
e Weighting factors e Characteristic times or frequencies

The define constant directive treats the data as a permanent part of the program.

The format of a define constant directive is usually quite simple. An instruction like:
DZCON DCW 12

will place the number 12 in the next available memory location and assign that location the name
DZCON. Every DC directive usually has a label, unless it is one of a series. The data and label may
take any form that the assembler permits.

More elaborate define constant directives that handle a large amount of data at one time are
provided, for example:

EMESS DCB ’ERROR’
SQRS DCW 1,4,9,16,25

A single directive may fill many bytes of program memory, limited perhaps by the length of a
line or by the restrictions of a particular assembler. Of course, you can always overcome any
restrictions by following one define constant directive with another:

MESSG DCB "NOW IS THE "
DCB "TIME FOR ALL "
DCB "GOOD MEN "
DCB "TO COME TO THE "
DCB "AID OF THEIR "
DCB "COUNTRY", O ;note the ’0’ terminating the string

Microprocessor assemblers typically have some variations of standard define constant directives.
Define Byte or DCB handles 8-bit numbers; Define Word or DCW handles 32-bit numbers or addresses.
Other special directives may handle character-coded data. The ARM assembler also defines DCD
to (Define Constant Data) which may be used in place of DCW.

2.3.2 The EQUATE Directive

The EQUATE directive allows the programmer to equate names with addresses or data. This
pseudo-operation is almost always given the mnemonic EQU. The names may refer to device ad-
dresses, numeric data, starting addresses, fixed addresses, etc.

The EQUATE directive assigns the numeric value in its operand field to the label in its label field.
Here are two examples:

TTY EQU 5
LAST EQU 5000
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Most assemblers will allow you to define one label in terms of another, for example:

LAST EQU FINAL
ST1 EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the operand
field may contain more complex expressions, as we shall see later. Double name assignments (two
names for the same data or address) may be useful in patching together programs that use different
names for the same variable (or different spellings of what was supposed to be the same name).

Note that an EQU directive does not cause the assembler to place anything in memory. The as-
sembler simply enters an additional name into a table (called a “symbol table”) which the assembler
maintains.

When do you use a name? The answer is: whenever you have a parameter that you might want to
change or that has some meaning besides its ordinary numeric value. We typically assign names to
time constants, device addresses, masking patterns, conversion factors, and the like. A name like
DELAY, TTY, KBD, KROW, or OPEN not only makes the parameter easier to change, but it also adds to
program documentation. We also assign names to memory locations that have special purposes;
they may hold data, mark the start of the program, or be available for intermediate storage.

What name do you use? The best rules are much the same as in the case of labels, except that
here meaningful names really count. Why not call the teletypewriter TTY instead of X15, a bit
time delay BTIME or BTDLY rather than WW, the number of the “GO” key on a keyboard GOKEY
rather than HORSE? This advice seems straightforward, but a surprising number of programmers
do not follow it.

Where do you place the EQUATE directives? The best place is at the start of the program, under
appropriate comment headings such as 1/0 ADDRESSES, TEMPORARY STORAGE, TIME CONSTANTS,
or PROGRAM LOCATIONS. This makes the definitions easy to find if you want to change them.
Furthermore, another user will be able to look up all the definitions in one centralised place.
Clearly this practice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the subroutine.

2.3.3 The AREA Directive

The AREA directive allows the programmer to specify the memory locations where programs,
subroutines, or data will reside. Programs and data may be located in different areas of memory
depending on the memory configuration. Startup routines interrupt service routines, and other
required programs may be scattered around memory at fixed or convenient addresses.

The assembler maintains a location counter (comparable to the computer’s program counter) which
contains the location in memory of the instruction or data item being processed. An area directive
causes the assembler to place a new value in the location counter, much as a Jump instruction
causes the CPU to place a new value in the program counter. The output from the assembler
must not only contain instructions and data, but must also indicate to the loader program where
in memory it should place the instructions and data.

Microprocessor programs often contain several AREA statements for the following purposes:

e Reset (startup) address e Stack

e Interrupt service addresses e Main program
e Trap (software interrupt) addresses e Subroutines

e RAM storage e Input/Output
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Still other origin statements may allow room for later insertions, place tables or data in memory,
or assign vacant memory space for data buffers. Program and data memory in microcomputers
may occupy widely separate addresses to simplify the hardware. Typical origin statements are:

AREA RESET
AREA $1000
AREA INT3

The assembler will assume a fake address if the programmer does not put in an AREA statement.
The AREA statement at the start of an ARM program is required, and its absence will cause the
assembly to fail.

2.3.4 Housekeeping Directives

There are various assembler directives that affect the operation of the assembler and its program
listing rather than the object program itself. Common directives include:

END, marks the end of the assembly language source program. This must appear in the file or a
“missing END directive” error will occur.

INCLUDE will include the contents of a named file into the current file. When the included file
has been processed the assembler will continue with the next line in the original file. For
example the following line

INCLUDE MATH.S

will include the content of the file math.s at that point of the file.

You should never use a lable with an include directive. Any labels defined in the included file
will be defined in the current file, hence an error will be reported if the same label appears
in both the source and include file.

An include file may itself include other files, which in turn could include other files, and so
on, however, the level of includes the assembler will accept is limited. It is not recommended
you go beyond three levels for even the most complex of software.

2.3.5 When to Use Labels

Users often wonder if or when they can assign a label to an assembler directive. These are our
recommendations:

1. All EQU directives must have labels; they are useless otherwise, since the purpose of an EQU
is to define its label.

2. Define Constant and Define Storage directives usually have labels. The label identifies the
first memory location used or assigned.

3. Other directives should not have labels.

2.4 Operands and Addresses

The assembler allow the programmer a lot of freedom in describing the contents of the operand or
address field. But remember that the assembler has built-in names for registers and instructions
and may have other built-in names. We will now describe some common options for the operand
field.
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2.4.1 Decimal Numbers
The assembler assume all numbers to be decimal unless they are marked otherwise. So:
ADD 100

means “add the contents of memory location 1001 to the contents of the Accumulator.”

2.4.2 Other Number Systems

The assembler will also accept hexadecimal entries. But you must identify these number systems
in some way: for example, by preceding the number with an identifying character.

2 mnnn Binary Base 2
8 mnnn  Octal Base 8
nnn Decimal Base 10

Oxnnn  Hexadecimal Base 16

It is good practice to enter numbers in the base in which their meaning is the clearest: that is,
decimal constants in decimal; addresses and BCD numbers in hexadecimal; masking patterns or
bit outputs in hexadecimal.

2.4.3 Names

Names can appear in the operand field; they will be treated as the data that they represent.
Remember, however, that there is a difference between operands and addresses. In an ARM
assembly language program the sequence:

FIVE EQU 5
ADD R2, #FIVE

will add the contents of memory location FIVE (not necessarily the number 5) to the contents of
data register R2.

2.4.4 Character Codes

The assembler allows text to be entered as ASCII strings. Such strings must be surrounded with
double quotation marks, unless a single ASCII character is quoted, when single qoutes may be
used exactly as in ’C’. We recommend that you use character strings for all text. It improves the
clarity and readability of the program.

2.4.5 Arithmetic and Logical Expressions

Assemblers permit combinations of the data forms described above, connected by arithmetic,
logical, or special operators. These combinations are called expressions. Almost all assemblers
allow simple arithmetic expressions such as START+1. Some assemblers also permit multiplication,
division, logical functions, shifts, etc. Note that the assembler evaluates expressions at assembly
time; if a symbol appears in an expression, the address is used (i.e., the location counter or
EQUATE value).

Assemblers vary in what expressions they accept and how they interpret them. Complex expres-
sions make a program difficult to read and understand.
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2.4.6 General Recommendations

We have made some recommendations during this section but will repeat them and add others
here. In general, the user should strive for clarity and simplicity. There is no payoff for being an
expert in the intricacies of an assembler or in having the most complex expression on the block.
We suggest the following approach:

e Use the clearest number system or character code for data.

e Masks and BCD numbers in decimal, ASCII characters in octal, or ordinary numerical
constants in hexadecimal serve no purpose and therefore should not be used.

e Remember to distinguish data from addresses.
e Don’t use offsets from the location counter.

e Keep expressions simple and obvious. Don’t rely on obscure features of the assembler.

2.5 Comments

All assemblers allow you to place comments in a source program. Comments have no effect on the
object code, but they help you to read, understand, and document the program. Good commenting
is an essential part of writing computer programs, programs without comments are very difficult
to understand.

We will discuss commenting along with documentation in a later chapter, but here are some

guidelines:

e Use comments to tell what application task the program is performing, not how the micro-
computer executes the instructions.

e Comments should say things like “is temperature above limit?”, “linefeed to TTY,” or “ex-
amine load switch.”

99 €y

e Comments should not say things like “add 1 to Accumulator,” “jump to Start,” or “look at
carry.” You should describe how the program is affecting the system; internal effects on the
CPU should be obvious from the code.

e Keep comments brief and to the point. Details should be available elsewhere in the docu-
mentation.

e Comment all key points.

e Do not comment standard instructions or sequences that change counters or pointers; pay
special attention to instructions that may not have an obvious meaning.

e Do not use obscure abbreviations.
e Make the comments neat and readable.

e Comment all definitions, describing their purposes. Also mark all tables and data storage
areas.

e Comment sections of the program as well as individual instructions.

e Be consistent in your terminology. You can (should) be repetitive, you need not consult a
thesaurus.
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e Leave yourself notes at points that you find confusing: for example, “remember carry was set
by last instruction.” If such points get cleared up later in program development, you may
drop these comments in the final documentation.

A well-commented program is easy to use. You will recover the time spent in commenting many
times over. We will try to show good commenting style in the programming examples, although
we often over-comment for instructional purposes.

2.6 Types of Assemblers

Although all assemblers perform the same tasks, their implementations vary greatly. We will not
try to describe all the existing types of assemblers, we will merely define the terms and indicate
some of the choices.

A cross-assembler is an assembler that runs on a computer other than the one for which it assembles
object programs. The computer on which the cross-assembler runs is typically a large computer
with extensive software support and fast peripherals. The computer for which the cross-assembler
assembles programs is typically a micro like the 6809 or MC68000.

When a new microcomputer is introduced, a cross-assembler is often provided to run on existing
development systems. For example, ARM provide the ’Armulator’ cross-assembler that will run
on a PC development system.

A self-assembler or resident assembler is an assembler that runs on the computer for which it
assembles programs. The self-assembler will require some memory and peripherals, and it may
run quite slowly compared to a cross-assembler.

A macroassembler is an assembler that allows you to define sequences of instructions as macros.

A microassembler is an assembler used to write the microprograms which define the instruction
set of a computer. Microprogramming has nothing specifically to do with programming micro-
computers, but has to do with the internal operation of the computer.

A meta-assembler is an assembler that can handle many different instruction sets. The user must
define the particular instruction set being used.

A one-pass assembler is an assembler that goes through the assembly language program only
once. Such an assembler must have some way of resolving forward references, for example, Jump
instructions which use labels that have not yet been defined.

A two-pass assembler is an assembler that goes through the assembly language source program
twice. The first time the assembler simply collects and defines all the symbols; the second time
it replaces the references with the actual definitions. A two-pass assembler has no problems with
forward references but may be quite slow if no backup storage (like a floppy disk) is available;
then the assembler must physically read the program twice from a slow input medium (like a
teletypewriter paper tape reader). Most microprocessor-based assemblers require two passes.

2.7 Errors

Assemblers normally provide error messages, often consisting of an error code number. Some
typical errors are:
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Undefined name Often a misspelling or an omitted definition

Illegal character Such as a 2 in a binary number

Illegal format A wrong delimiter or incorrect operands

Invalid expression for example, two operators in a row

Illegal value Usually the value is too large

Missing operand Pretty self explanatory

Double definition Two different values assigned to one name

Illegal label Such as a label on a pseudo-operation that cannot have one
Missing label Probably a miss spelt lable name

Undefined operation code

In interpreting assembler errors, you must remember that the assembler may get on the wrong
track if it finds a stray letter, an extra space, or incorrect punctuation. The assembler will
then proceed to misinterpret the succeeding instructions and produce meaningless error messages.
Always look at the first error very carefully; subsequent ones may depend on it. Caution and
consistent adherence to standard formats will eliminate many annoying mistakes.

2.8 Loaders

The loader is the program which actually takes the output (object code) from the assembler and
places it in memory. Loaders range from the very simple to the very complex. We will describe a
few different types.

A bootstrap loader is a program that uses its own first few instructions to load the rest of itself
or another loader program into memory. The bootstrap loader may be in ROM, or you may have
to enter it into the computer memory using front panel switches. The assembler may place a
bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. It typically loads each program
into the memory space immediately following that used by the previous program. The programs,
however, must themselves be capable of being moved around in this way; that is, they must be
relocatable. An absolute loader, in contrast, will always place the programs in the same area of
memory.

A linking loader loads programs and subroutines that have been assembled separately; it resolves
cross-references — that is, instructions in one program that refer to a label in another program.
Object programs loaded by a linking loader must be created by an assembler that allows external
references. An alternative approach is to separate the linking and loading functions and have the
linking performed by a program called a link editor and the loading done by a loader.
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3 ARM Architecture

This chapter outlines the ARM processor’s architecture and describes the syntax rules of the ARM
assembler. Later chapters of this book describe the ARM’s stack and exception processing system
in more detail.

Figure [3.1 on the following page shows the internal structure of the ARM processor. The ARM
is a Reduced Instruction Set Computer (RISC) system and includes the attributes typical to that
type of system:

e A large array of uniform registers.

e A load/store model of data-processing where operations can only operate on registers and not
directly on memory. This requires that all data be loaded into registers before an operation
can be preformed, the result can then be used for further processing or stored back into
memory.

e A small number of addressing modes with all load/store addresses begin determined from
registers and instruction fields only.

e A uniform fixed length instruction (32-bit).

In addition to these traditional features of a RISC system the ARM provides a number of additional
features:

e Separate Arithmetic Logic Unit (ALU) and shifter giving additional control over data pro-
cessing to maximize execution speed.

e Auto-increment and Auto-decrement addressing modes to improve the operation of program
loops.

e Conditional execution of instructions to reduce pipeline flushing and thus increase execution
speed.

3.1 Processor modes

The ARM supports the seven processor modes shown in table [3.1]

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing.

Most application programs execute in User mode. While the processor is in User mode, the
program being executed is unable to access some protected system resources or to change mode,
other than by causing an exception to occur (see on page . This allows a suitably written
operating system to control the use of system resources.

23
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Processor mode Description

User usr Normal program execution mode

FIQ fiq Fast Interrupt for high-speed data transfer

IRQ irq Used for general-purpose interrupt handling
Supervisor svc A protected mode for the operating system

Abort abt Implements virtual memory and/or memory protection
Undefined und Supports software emulation of hardware coprocessors
System sys Runs privileged operating system tasks

Table 3.1: ARM processor modes

The modes other than User mode are known as privileged modes. They have full access to system
resources and can change mode freely. Five of them are known as exception modes: FIQ (Fast
Interrupt), IRQ (Interrupt), Supervisor, Abort, and Undefined. These are entered when specific
exceptions occur. Each of them has some additional registers to avoid corrupting User mode state
when the exception occurs (see [3.2]for details).

The remaining mode is System mode, it is not entered by any exception and has exactly the same
registers available as User mode. However, it is a privileged mode and is therefore not subject to
the User mode restrictions. It is intended for use by operating system tasks which need access to
system resources, but wish to avoid using the additional registers associated with the exception
modes. Avoiding such use ensures that the task state is not corrupted by the occurrence of any
exception.

3.2 Registers

The ARM has a total of 37 registers. These comprise 30 general purpose registers, 6 status registers
and a program counter. Figure [3.2]illustrates the registers of the ARM. Only fifteen of the general
purpose registers are available at any one time depending on the processor mode.

There are a standard set of eight general purpose registers that are always available (R0 — R7) no
matter which mode the processor is in. These registers are truly general-purpose, with no special
uses being placed on them by the processors’ architecture.

A few registers (R8 — R12) are common to all processor modes with the exception of the fiq
mode. This means that to all intent and purpose these are general registers and have no special
use. However, when the processor is in the fast interrupt mode these registers and replaced with
different set of registers (R8 fig - R12 fig). Although the processor does not give any special
purpose to these registers they can be used to hold information between fast interrupts. You can
consider they to be static registers. The idea is that you can make a fast interrupt even faster
by holding information in these registers.

The general purpose registers can be used to handle 8-bit bytes and 32-bit Wordsﬂ When we use
a 32-bit register in a byte instruction only the least significant 8 bits are used. Figure on the
following page demonstrates this.

The remaining registers (R13 — R15) are special purpose registers and have very specific roles:
R13 is also known as the Stack Pointer, while R14 is known as the Link Register, and R15 is
the Program Counter. The “user” (usr) and “System” (sys) modes share the same registers. The
exception modes all have their own version of these registers. Making a reference to register R14
will assume you are referring to the register for the current processor mode. If you wish to refer
to the user mode version of this register you have refer to the R14 usr register. You may only

I Later revi ion of the ARM architecture are al o able to handle 16-bit half-word .
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Modes
Privileged Modes
Exception Modes

User | System | Supervisor Abort Undefined | Interrupt | Fast Interrupt
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
RS RS RS RS RS RS R8 fiq
R9 R9 R9 R9 R9 R9 R9_fiq
R10 R10 R10 R10 R10 R10 R10_fiq
R11 R11 R11 R11 R11 R11 R11 fiq
R12 R12 R12 R12 R12 R12 R12 fiq
R13 R13 R13 svc R13 abt R13 und R13 irq R13_fiq
R14 R14 R14 svc R14 abt R14 und R14 irq R14 fiq
PC PC PC PC PC PC PC

] CPSR \ CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_sve | SPSR_abt | SPSR_und | SPSR_irq SPSR_ fiq

Figure 3.2: Register Organization

Bit: [31 --- 23]24 - 16|15 --- 8|7 --- 0O
8-Bit Byte

| 32-Bit Word

Figure 3.3: Byte/Word

refer to register from other modes when the processor is in one of the privileged modes, i.e., any
mode other than user mode.

There are also one or two status registers depending on which mode the processor is in. The Cur-
rent Processor Status Register (CPSR) holds information about the current status of the processor
(including its current mode). In the exception modes there is an additional Saved Processor Status
Register (SPSR) which holds information on the processors state before the system changed into
this mode, i.e., the processor status just before an exception.

3.2.1 The stack pointer, SP or R13

Register R13 is used as a stack pointer and is also known as the SP register. Each exception mode
has its own version of R13, which points to a stack dedicated to that exception mode.

The stack is typically used to store temporary values. It is normal to store the contents of any
registers a function is going to use on the stack on entry to a subroutine. This leaves the register
free for use during the function. The routine can then recover the register values from the stack
on exit from the subroutine. In this way the subroutine can preserve the value of the register and
not corrupt the value as would otherwise be the case.

See Chapter [15] for more information on using the stack.
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3.2.2 The Link Register, LR or R14

Register R14 is also known as the Link Register or LR.

It is used to hold the return address for a subroutine. When a subroutine call is performed via a
BL instruction, R14 is set to the address of the next instruction. To return from a subroutine you
need to copy the Link Register into the Program Counter. This is typically done in one of the two
ways:

e Execute either of these instructions:

MOV  PC, LR or BAL LR

e On entry to the subroutine store R14 to the stack with an instruction of the form:
STMIA  SP!,{(registers), LR}
and use a matching instruction to return from the subroutine:
LDMIA  SP!,{(registers), PC}

This saves the Link Register on the stack at the start of the subroutine. On exit from the
subroutine it collects all the values it placed on the stack, including the return address that
was in the Link Register, except it returns this address directly into the Program Counter
instead.

See Chapter [14) on page for further details of using the stack, and Chapter [15] on page for
further details on using subroutines.

When an exception occurs, the exception mode’s version of R14 is set to the address after the
instruction which has just been completed. The SPSR is a copy of the CPSR just before the
exception occurred. The return from an exception is performed in a similar way to a subroutine
return, but using slightly different instructions to ensure full restoration of the state of the program
that was being executed when the exception occurred. See on page [29| for more details.

3.2.3 The program counter, PC or R15

Register R15 holds the Program Counter known as the PC. It is used to identify which instruction
is to be preformed next. As the PC holds the address of the next instruction it is often referred
to as an instruction pointer. The name “program counter” dates back to the times when program
instructions where read in off of punched cards, it refers to the card position within a stack of
cards. In spite of its name it does not actually count anything!

Reading the program counter

When an instruction reads the PC the value returned is the address of the current instruction plus
8 bytes. This is the address of the instruction after the next instruction to be executedﬂ

This way of reading the PC is primarily used for quick, position-independent addressing of nearby
instructions and data, including position-independent branching within a program.

An exception to this rule occurs when an STR (Store Register) or STM (Store Multiple Registers)
instruction stores RI15. The value stored is UNKNOWN and it is best to avoid the use of these
instructions that store R15.

2 Thi i cau ed by the proce or having already fetched the next in truction from memory while it i decoding
the current in truction. Thu the PC i till the next in truction to be executed, but that i not the in truction
immediately after the current one.
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Writing the program counter

When an instruction writes to R15 the normal result is that the value written is treated as an
instruction address and the system starts to execute the instruction at that addresq |

3.2.4 Current Processor Status Registers: CPSR

Rather surprisingly the current processor status register (CPSR) contains the current status of the
processor. This includes various condition code flags, interrupt status, processor mode and other
status and control information.

The exception modes also have a saved processor status register (SPSR), that is used to preserve
the value of the CPSR when the associated exception occurs. Because the User and System modes
are not exception modes, there is no SPSR available.

Figure [3.4] shows the format of the CPSR and the SPSR registers.

6 5 4 - 0
| F[SBZ ] Mode |

31 30 29 28 27 ... 8 7
(N[Z[C[V] SBZ |1

Figure 3.4: Structure of the Processor Status Registers

The processors’ status is split into two distinct parts: the User flags and the Systems Control
flags. The upper byte is accessible in User mode and contains a set of flags which can be used to
effect the operation of a program, see section The lower byte contains the System Control
information.

Any bit not currently used is reserved for future use and should be zero, and are marked SBZ in
the figure. The | and F bits indicate if Interrupts (I) or Fast Interrupts (F) are allowed. The Mode
bits indicate which operating mode the processor is in (see on page .

The system flags can only be altered when the processor is in protected mode. User mode programs
can not alter the status register except for the condition code flags.

3.3 Flags

The upper four bits of the status register contains a set of four flags, collectively known at the
condition code. The condition code can be used to control the flow of the program execution. The
is often abbreviated to just (cc). The condition code flags are:

N The Negative (sign) flag takes on the value of the most significant bit of a result. Thus when
an operation produces a negative result the negative flag is set and a positive result results
in a the negative flag being reset. This assumes the values are in standard two’s complement
form. If the values are unsigned the negative flag can be ignored or used to identify the value
of the most significant bit of the result.

Z The Zero flag is set when an operation produces a zero result. It is reset when an operation
produces a non-zero result.

C The Carry flag holds the carry from the most significant bit produced by arithmetic operations
or shifts. As with most processors, the carry flag is inverted after a subtraction so that the
flag acts as a borrow flag after a subtraction.

3 A the proce or ha already fetched the in truction after the current in truction it i required to flu h the
in truction cache and tart again. Thi will cau e a hort, but not ignificant, delay.
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V  The Overflow flag is set when an arithmetic result is greater than can be represented in a
register.

Many instructions can modify the flags, these include comparison, arithmetic, logical and move
instructions. Most of the instructions have an S qualifier which instructs the processor to set the
condition code flags or not.

3.4 Exceptions

Exceptions are generated by internal and external sources to cause the processor to handle an event,
such as an externally generated interrupt or an attempt to execute an undefined instruction. The
ARM supports seven types of exception, and a provides a privileged processing mode for each
type. Table lists the type of exception and the processor mode associated with it.

When an exception occurs, some of the standard registers are replaced with registers specific to the
exception mode. All exception modes have their own Stack Pointer (SP) and Link (LR) registers.
The fast interrupt mode has more registers (R8 fig — R1I2_fiq) for fast interrupt processing.

Exception Type Processor Mode
Reset Supervisor  svc
Software Interrupt Supervisor  svc
Undefined Instruction Undefined und
Prefetch Abort Abort abt
Data Abort Abort abt
Interrupt TIRQ irq
Fast Interrupt FIQ fiq

Table 3.2: Exception processing modes

The seven exceptions are:

Reset when the Reset pin is held low, this is normally when the system is first turned on or when
the reset button is pressed.

Software Interrupt is generally used to allow user mode programs to call the operating system.
The user program executes a software interrupt (SWI, on page [152)) instruction with a
argument which identifies the function the user wishes to preform.

Undefined Instruction is when an attempt is made to preform an undefined instruction. This
normally happens when there is a logical error in the program and the processor starts to
execute data rather than program code.

Prefetch Abort occurs when the processor attempts to access memory that does not exist.

Data Abort occurs when attempting to access a word on a non-word aligned boundary. The
lower two bits of a memory must be zero when accessing a word.

Interrupt occurs when an external device asserts the IRQ (interrupt) pin on the processor. This
can be used by external devices to request attention from the processor. An interrupt can
not be interrupted with the exception of a fast interrupt.

Fast Interrupt occurs when an external device asserts the FIQ (fast interrupt) pin. This is
designed to support data transfer and has sufficient private registers to remove the need for
register saving in such applications. A fast interrupt can not be interrupted.
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When an exception occurs, the processor halts execution after the current instruction. The state
of the processor is preserved in the Saved Processor Status Register (SPSR) so that the original
program can be resumed when the exception routine has completed. The address of the instruction
the processor was just about to execute is placed into the Link Register of the appropriate processor
mode. The processor is now ready to begin execution of the exception handler.

The exception handler are located a pre-defined locations known as exception vectors. It is the
responsibility of an operating system to provide suitable exception handling.

3.5 Register Transfer Language

Before continuing, we need to develop an unambiguous notation to help us describe the way in
which information moves around the processor (see figure on page . The register transfer
language (RTL) is just such a notation.

Each component of the processor is given a name or an abbreviation, for example the Memory
Address Register is known as the MAR, and the Program Counter is refereed to as PC. A left-,
or back-arrow («) indicates the transfer of data from one component to another. Thus the RTL
expression:

MAR < PC

means that the contents of the program counter are transferred (i.e. copied into) the memory
address register. A comment can be added to the line by placing the text after a semi-colon (;)
following the expression.

In addition to accessing a component directly we can also refer to a particular field, or part, of
a device by placing the name of the field in parentheses after the device name. For example, the
Instruction Register (IR) is split into a number of fields including the operation code (or op-code)
field (see section for a further description of the IR fields). In order to access the op-code
field we would need to write:

IR(op-code)

A field is not always given a name, so we need to indicate the field by specifying which bits have
been grouped to provide the field. This is known as a bit field which we denote by giving the lower
and upper bits, separated by a colon as the field name. Thus to select the upper four bits (bits
28 to 31 inclusive) of register R4 we would write:

R4(28:31)

Finally, we also have the notion of a guard. This is a condition which must be true before the
expression can be evaluated. The guard is written before the RTL expression it is guarding and
is separated from that expression with a colon (:). Normally the guard is a test for an optional
item in the instruction. For example, there is a version of the MOV instruction (MOVS) which sets
the CPSR flags N and Z. We can place a guard, which test for the extra S like this:

(S): CPSR « ALU(Flags)
When more than one guard is required we simply list the guards next to each other in sequence:
(ec)(S): CPSR «— ALU(Flags)

indicates the process must be in the current condition, as indicated by the (cc) guard (see sec-
tion on page , and it must be the S form of the instruction before the RTL expression is
be executed.
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3.5.1 Memory

When accessing external random access memory the processor must go though the memory device,
indicated by the device name M. The processor must first place the address, or location, it intends
to access in the Memory Address Register (MAR). When writing to external memory the value
to be written should then be copied into the Memory Buffer Register (MBR). When reading from
memory the value made available in the MBR.

The following RTL demonstrates how the system accesses memory. The location we wish to access
is held in the register R12. In the first example we are reading the value from memory into register
RO while the second example writes the value in register RI to memory.

Read Write
MAR — R12 MAR «— R12
MBR «— M(MAR) MBR «— R1
RO — MBR M(MAR) < MBR

In particular you should note the two lines which include the item M(MAR). This is where the
data is actually transferred between the processor and external memory.

Although this is the correct way of accessing external memory, it is rather tiresome. To overcome
this we abuse the notation slightly by placing the location we wish to access as a field to the
memory device, and read/write to it directly. Thus we can write the above examples as:

RO — M(R12)  M(RI12) « RI

In this way we hide the reference to the MAR and MBR inside the reference to the memory device

M(...).

3.5.2 Arithmetic and Logic Unit

In a similar manner the ALU has a number of rules for its use. The ALU has a number of parts,
or registers. Normally the ALU requires two operands (arguments) and a command.

A The first operand (or argument) goes into ALU register A, written as ALU(A). The
design of the processor means that only a register may be moved into the A register.

B The second operand (or argument) should be placed in the ALU’s B register, denoted
by ALU(B). The value for the B register may come from a number of different sources,
normally a register. As the B register is connected to the Barrel Shift component the
value can be modified (shifted) as it is copied into the B register, this is discussed later.

Cmd Once the two operands have been set up, copied into registers A and B, the ALU needs
to know what to do with them. Thus we also have a Command (Cmd) register. We
should write this as ALU(Cmd) but we normally miss off the register name when writing

to the ALU.

The commands the ALU can process are:
add R=A+B AddAtoB
subtract R=A — B Subtract B from A
and R=A AB Bitwise AND of A and B
or R=A VB Bitwise OR of A and B
eor R=A @B Exclusive OR of A and B

not R=B Logical complement of B
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R Having preformed some operation the result of that operation is placed in the Result
(R) register. As with the command register we should refer to this register as ALU(R),
however, when reading from the ALU it can be assumed we are referring to the Result
register, so we miss it off.

Flags  Finally we have the flags register. This includes the N, Z, C and V flags after the
operation. The state of these flags can be copied into the Current Process Status Register
(CPSR) for use with conditional execution, discussed in section on page

To demonstrate the way the ALU works, let us look at how it would add two registers together.
The instruction ADD RO, R1, R2 would add the content of register RI to the content of register
R2 placing the result in the register RO. The register transfer language to describe this would be:

ALU(A) — R1I ; First operand
ALU(B) — R2 . Second operand
ALU <« add ; ALU command
RO «— ALU ; Read result

Note the lack of field in the last two lines. We are using the defaults for the write (cmd) and read
(R) operations. As with the memory operations we tend to abuse the notation by writing a single
line which summarised this operation:

RO — R1 + R2

The convention is that the item before the operator is placed in the ALU register A and the item
after the operator is placed in register B. In our example the operator is the plus sign (+), while
the register RI would be copied into ALU(A) and R2 would be copied into ALU(B).

The data paths leading to the A and B registers pass though two additional components that
preform operations which traditionally form part of the Arithmetic and Logic Unit. These are the
Booth Multiplier and Barrel Shifter respectively.

Booth Multiplier

The Booth multiplier is a hardware component that is capable of multiplying two signed numbers.
It can take two 16-bit values and produces a single 32-bit result. As with the ALU, the Booth
Multiplier (BM) has two input registers (A and B) and one results register (R). The instruction:

MUL RO, R1, R2

will multiply the value in register RI with that in register R2, placing the result in RO0. The RTL
for this would be:

M(A) « R1(0:15) ; First operand
M(B) « R2(0:15) ; Second operand

ALU(A) — BM(R) ; Result gos on to the ALU
RO — ALU : Read result

There are two points to note here, firstly only the lower 16-bits (or halfwords) of the operands
are used in the multiply operation. The second point to note is that the result must go on to the
ALU before it can be copied into the destination register.

You may be surprised to discover that whilst this is what actually happens inside the processor
we tend to write it differently:
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Shift Method RTL Section Page
Logical Shift Left A>B 5.1.2 51
Logical Shift Right A<B [.13 2
Arithmetic Shift Right A+>B [5.1.4  [52]
Rotate Right A>B 5.1.5 53]
Rotate Right Extend A>B 5.1.6 54}

Table 3.3: Barrel Shifter Operations

RO «— R1 x R2

The Booth Multiplier is named after Andrew D. Booth who first suggested a method of multiplying
two numbers together that could be implemented as a hardware componeniﬂ See Chapter for
a discussion of the Multiply instructions.

Barrel Shifter

The Barrel Shift unit allows the ARM to manipulate the second operand, leading to register B
of the ALU, before it actually reaches it. This is an advantage when dealing with bit-orientated
operations (Chapter and data structures (Chapter. For a discussion on the use of the Barrel
Shift we refer you to Chapter [5| Particularly the discussion of the data addressing mode ({op1))

in section [5.1] on page [51]

Table [3.3| above shows how we write the five different ways in which data can be manipulated by
the barrel shift, and which section of Chapter [5| discusses the shift method.

For example, if we wish to add the value of register R2 shifted left by 4 bits (effectively multiplied
by 16) to the register R1 leaving the result in register R0, we would give the instruction:

ADD RO, R1, R2, LSL #4
Which would be represented in RTL as:

RO —RI +R2« 4

Note the use of the shorthand form of the ALU operation + (add). As the shift is on the right
hand side of the operator, the result must be placed in register B of the ALU. It is only data going
to register B which can be shifted in the manner anyhow so that works out.

You should also note that most processes require a separate instruction to preform these operations.

3.6 Control Unit

The Control Unit is the most complex part of the processor. This controls the overall operation
of the processor. It sends control signals to the other devices prompting them to place data on
one of the buses or take data from the bus. The control unit is the device which actually executes
the RTL we have been looking at. Indeed the purpose of this book is to describe the operation of
this unit.

4Booth’ paper A signed binary multiplication technique wa fir t publi hed in the Quarterly Journal of Me-
chanics and Applied Mathematics, 4:2 (236-240) in 1951.
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So what happens in the Control Unit? In essence it is quite simple, it reads a machine instruction
from memory and then preforms the operation described by the instruction. It does this though
the now famous fetch/execute cycle. This starts with the fetch phase where the control unit will
fetch the next instruction from memory into the Instruction Register (IR).

In older microprocessors the execute phase was a simple task. When processors become more
complex a micro-code system was introduced where the execute phase consisted of executing a
series of RTL like instructions within the control unit itself. Such systems are refereed to as
Complex Instruction Set Computers (CISC). Such systems include the Motorola MC68000, and
the Intel 80x86 series.

The ARM however, is a Reduced Instruction Set Computer (RISC) system, which means the
designers chose to use a larger instruction size (32-bit) in exchange for making the control unit
simple, well simpler. Other RISC processors include the SPARC, and the PowerPC range (Gn).

A RISC processor has a number of stages to the execute part of the fetch/execute cycle:

Instruction Fetch Fetch the instruction from memory into the instruction register.

Instruction Decode Decode the instruction in the instruction register working out what we
are supposed to do next.

Operand Fetch Fetch the source operands for the task, this may involve the use of the
data addressing mode (see on page or a memory addressing

mode (see on page [54)).

Execute Perform the requested operation.

Operand Store Save the result someplace, this will almost always be a register.

The ARM have been designed to perform these stages simultaneously. So whilst it is decoding one
instruction it can be fetching the next instruction from memory. This is known as the instruction
pipeline.

The way in which the pipeline works can best be seen by examining the RTL the control unit will
generate when processing the instruction

SUBS RO, RO, #1

This instruction will subtract 1 from the content of the register RO, and set the Z flag should it
become zero. This is a particularly useful instruction as we will see in chapter [0

It should be noted that while we discuss a five stage instruction pipeline, different variants of the
ARM have a different stages. The version of the ARM we are using has a three stage pipeline:
Instruction Fetch and Decode; Operand Fetch; Execute and Operand Store.

3.6.1 Instruction Fetch

The first step is to copy the memory location contained in the program counter into the memory
address register.

MAR «— PC

The program counter is badly named as it does not count programs, or anything else for that
matter, but contains the address of the next instruction in memory to be executed. In some system
it is called the instruction pointer, or IP. Once the MAR has the location of the next instruction,
the contents of the program counter are incremented (moved on to the next instruction) with a
special address incrementer (INC) circuit and moved back to the program counter. In this way, the
program counter is pointing to the next instruction while the current instruction is being executed.
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INC — MAR
PC « INC

The MAR now contains a copy of the contents of the PC, so that the instruction to be executed
is read from the memory and transferred to the memory buffer register (MBR). Once in the MBR
the instruction can then be copied into the instruction register (IR).

MBR « M(MAR)
IR — MBR

3.6.2 Imnstruction Decode

Now the instruction is in the instruction register it is necessary to decode it. The IR is divided
into a number of fields or parts.

op-code
This is the operation code or binary instruction which tells the control unit which function
to preform.

condition code.
This is a general guard for the whole instruction. The instruction will only be preformed if
the process is in this state or the condition code has been set to always, the default. See
section on page [42] for more information. Our example instruction has the default
setting, so there is not guard and the instruction will always be executed.

Set flags.
Most of the data processing instructions include a S variation. Such as our SUBS instruction.
The (S) field used to indicate whether the instruction should set the CPSR flags (as in our
example) or not.

destination register.
All of the instructions take one or two source values, and preform some operation on them,
placing a result in the destination register. With the exception of the store instruction it is
always a register. In our example this would be the register RO.

source register.
The majority of instructions require one or two source values to operate on. The (source)
register indicates which register holds the source value for the instruction/operation. In our
example this would also be the register RO.

opl The data processing instructions all require a source value which can be calculated as part
of the instruction. This is known as a (op?) value. See section [5.1] on page [51] for a full
discussion of the possible values for (op1). Our subtract instruction is a data processing
instruction and (op!) is an immediate value, so it will take the value from the (value) part
of the instruction register.

op2 The memory based instructions require a memory location to work with, this is specified in
an effective address, known as an (op2) operand. Section on page goes into the details
of the (op2) field.

value
Holds a small value as part of the binary instruction. This is normally used when calculating
the second operand, either (opl) or (op2). As we are using immediate addressing in our
example instruction (the #1), the value (1) will be in the (value) field.
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offset
This is similar to (value) except the value is larger. This field is only used by the branch
instructions.

Whilst all of the fields are available, they only have any real meaning in the context of the
instruction. The only fields that have any real value are the op-code and condition fields. Even
then not all instructions have an condition field.

The instruction decode stage of the fetch/execute cycle does not actually produce any RTL.
However, for our example instruction the IR will be broken down as follows:

op-code condition set destination source opl value
subtract always true RO RO immediate 1

3.6.3 Operand Fetch

The operand fetch stage will prepare the ALU for the execution phase by reading the operands
into the ALU registers.

In our example we read the (source) register into the ALU’s A register.
ALU(A) < RO
At the same time we can also copy the second operand into register B of the ALU. As this is

a data processing instruction the control unit will analyse IR(opl) and see that we are using an
immediate value. Thus it will copy the value field into the ALU register.

ALU(B) < IR(value)

As the (op1) value passes through the Barrel Shifter we can preform a shift operation on the value
as it passes into the ALU.

For the memory load instruction, the operand fetch stage will read a value from external memory
as specified by (op2).

3.6.4 Execute

Now that the ALU has been configured, both registers have been loaded with the appropriate
operands (values), we can now instruct the ALU to subtract the second operand from the first.
This is done by simply sending a subtract message to the ALU.

ALU « subtract

3.6.5 Operand Store

Finally we need to store the result of this operation by copying the value from the ALU to the
destination register.

RO «— ALU
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However we also have the (S) flag set, so we must copy the flags from the ALU back into the
CPSR in the control unit.

CPSR «+ ALU(flags)
For the memory store instruction the destination is a memory location specified by (op2). This is

the only instruction that does not use a register as the destination. This will cause the system to
write the result to memory.

3.6.6 Summary

We have just looked at the fetch/execute cycle and the way the system actually processes an
instruction. In particular we looked at the processing of a specific instruction

SUBS RO, RO, #1

which subtracts 1 from the content of the register R0, and sets the Z flag should it become zero.

Here we will list the RTL that was produced without all the bothersome interpretation.

MAR «— PC : Instruction Fetch
INC — MAR
PC «— INC
MBR — M(MAR)
IR — MBR
: Instruction Decode
ALU(A) — RO ; Operand Fetch
ALU(B) « IR(value)
ALU <« subtract : Execute the instruction
RO — ALU ; Operand Store

CPSR «+ ALU(flags)

If we abuse the notation, as discussed earlier in sections