
D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

1

BROUGHT TO YOU IN PARTNERSHIP WITH257258

Docker Security

BY KNOX ANDERSON, PRODUCT MARKER, SYSDIG

OVERVIEW

Are Containers insecure? Not at all. Features like process isolation with

user namespaces, resource encapsulation with cgroups, immutable

images, and shipping the minimal software and dependencies reduce

the attack vector providing a great deal of protection.

Container security tools are becoming hot topics in the modern IT world

as the early adoption fever is transforming into a mature ecosystem.

Security is an unavoidable subject to address when we plan to change

how we architect our infrastructure.

This Refcard will lay out the basics of the container security challenge,

give you hands-on experience with basic security options, and also spell

out some more advanced workflows.

We’ll split container security into three sections covering what to do at

each step of your container security lifecycle.

•	 CI/CD and pre-deployment security

•	 Run-time security

•	 Incident response and forensics

CI/CD AND PRE-DEPLOYMENT SECURITY

CONTAINER IMAGE AUTHENTICITY

There are plenty of Docker images and repositories on the Internet for

every type of application under the sun, but if you are pulling images

without using any trust and authenticity mechanism, you are basically

running arbitrary software on your systems.

•	 Where did the image come from?

•	 Do you trust the image creator? Which security policies are

they using?

•	 Do you have objective cryptographic proof that the author is

actually that person?

•	 How do you know nobody has been tampering with the image

after you pulled it?

Docker will let you pull and run anything you throw at it by default,

so encapsulation won’t save you from this. Even if you only consume

your own custom images, you want to make sure nobody inside the

organization is able to tamper with an image. The solution usually boils

down to the classical PKI-based chain of trust.

Best practices:

•	 The regular Internet common sense: do not run unverified

software from sources that you don’t explicitly trust.

•	 Deploy a container-centric trust server using some of the

registry servers.

•	 Enforce mandatory signature verification for any image that is

going to be pulled or run on your systems.

Example: Deploying a full-blown trust server is beyond the scope of this

card, but you can start signing your images right away.

1.	 Get a Docker Hub account if you don’t have one already.

2.	 Create a directory containing the following trivial Dockerfile:

CONTENTS

öö OVERVIEW

öö CI/CD AND PRE-DEPLOYMENT

SECURITY

öö RUNTIME CONTAINER SECURITY

öö INCIDENT RESPONSE

öö CONCLUSION

https://quay.io/plans/
http://go.sysdig.com/l/231542/2017-10-12/7yg7j?UTM_Source=Content_Syndication&UTM_SFDC_Campaign=701f1000001cRtP&UTM_Offer=secure-20-vendors&UTM_Campaign=Top20dockertools&UTM_Medium=300x600&UTM_Content=Dzone-security-refcard&UTM_Term=&UTM_Creativeid=

BROUGHT TO YOU IN PARTNERSHIP WITH

https://sysdig.com/?UTM_Source=Content_Syndication&UTM_SFDC_Campaign=701f1000001cRtP&UTM_Offer=Sysdig-homepage&UTM_Campaign=sysdig-secure&UTM_Medium=fullpage&UTM_Content=Dzone-security-refcard&UTM_Term=&UTM_Creativeid=

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

3

DOCKER SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

cat Dockerfile

FROM alpine:latest

Build the image:

docker build -t <youruser>/alpineunsigned .

Log into your Docker Hub account and submit the image:

docker login

[…]

docker push <youruser>/alpineunsigned:latest

Enable Docker trust enforcement:

export DOCKER_CONTENT_TRUST=1

Now, try to retrieve the image you just uploaded:

docker pull <youruser>/alpineunsigned

You should receive the following error message:

Using default tag: latest

Error: remote trust data does not exist for docker.

io/<youruser>/alpineunsigned:

notary.docker.io does not have trust data for docker.

io/<youruser>/alpineunsigned

Now that DOCKER_CONTENT_TRUST is enabled, you can build the

container again and it will be signed by default.

docker build --disable-content-trust=false -t

<youruser>/alpinesigned:latest .

Now, you should be able to push and pull the signed container without

any security warning. The first time you push a trusted image, Docker

will create a root key for you and you will also need a repository key for

the image. Both will prompt you for a user-defined password.

Your private keys are in the ~/.docker/trust directory; safeguard and back

them up.

The DOCKER_CONTENT_TRUST is just an environment variable and will

die with your shell session. But trust validation should be implemented

across the entire process, from the images building and the images

hosting in the registry to images execution in the nodes.

DOCKER CREDENTIALS AND SECRETS

Your software needs sensitive information to run: user password

hashes, server-side certificates, encryption keys, etc. This situation

is made worse by the nature of containers; you don’t just “set up a

server” — there’s a large number of distributed containers that may be

constantly created and destroyed. You need an automatic and secure

process to share this sensitive info.

Best practices:

•	 Do not use environment variables for secrets; this is a very

common yet very insecure practice.

•	 Do not embed any secrets in the container image. Read this IBM

post-mortem report: “The private key and the certificate were

mistakenly left inside the container image.”

•	 Deploy a Docker credentials management software if your

deployments get complex enough. Do not attempt to create your

own “secrets storage” (curl-ing from a secrets server, mounting

volumes, etc.) unless you really know what you

are doing.

Examples: First, let’s see how to capture an environment variable:

docker run -it -e password=’S3cr3tp4ssw0rd’ alpine sh

/ # env | grep pass

password=S3cr3tp4ssw0rd

It’s that simple, even if you su to a regular user:

/ # su user

/ $ env | grep pass

password=S3cr3tp4ssw0rd

Nowadays, container orchestration systems offer some basic secret

management. For example, Kubernetes has the secrets resource.

Docker Swarm has also its own secrets feature, which will be quickly

demonstrated here.

Initialize a new Docker Swarm (you may want to do this on a VM):

docker swarm init --advertise-addr <your_advertise_addr>

Create a file with some random text, your secret:

cat secret.txt

This is my secret

Create a new secret resource from this file:

docker secret create somesecret secret.txt

Create a Docker Swarm service with access to this secret; you can

modify the uid, gid, mode, etc:

docker service create --name nginx --secret

source=somesecret,target=somesecret,mode=0400 nginx

Log into the Nginx container; you will be able to use the secret:

root@3989dd5f7426:/# cat /run/secrets/somesecret
This is my secret

root@3989dd5f7426:/# ls /run/secrets/somesecret

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

4

DOCKER SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

-r-------- 1 root root 19 Aug 28 16:45 /run/secrets/

somesecret

This is a minimal proof of concept. At the very least, now your secrets

are properly stored and can be revoked or rotated from a central point

of authority.

CONTAINER RESOURCE ABUSE

Containers are much more numerous than virtual machines on

average. They are lightweight and you can spawn big clusters of them

on modest hardware. That’s definitely an advantage, but it implies

that a lot of software entities are competing for the host resources.

Software bugs (such as memory leaks), design miscalculations, or a

deliberate malware attack can easily cause a Denial of Service if you

don’t properly configure resource limits.

To add to the problem, there are several different resources to safeguard:

CPU, main memory, storage capacity, network bandwidth, I/O

bandwidth, swapping… there are some kernel resources that are not so

evident, and even more obscure resources such as user IDs (UIDs) exist.

Best practices: Limits on these resources are disabled by default on

most containerization systems; configuring them before deploying to

production is basically a must. There are three fundamental steps:

•	 Use the resource limitation features bundled with the Linux

kernel and/or the containerization solution.

•	 Try to replicate the production loads on pre-production. Some

people use synthetic stress tests, and others choose to “replay”

the actual real-time production traffic. Load testing is vital to

knowing where the physical limits are and where your normal

range of operations is.

•	 Implement Docker monitoring and alerting. You don’t want to

hit the wall if there is a resource abuse problem. Malicious or not,

you need to set thresholds and be warned before it’s too late.

Example: Control groups, or cgroups, are a feature of the Linux kernel

that allow you to limit the access processes and containers have to

system resources. We can configure some limits directly from the

Docker command line:

docker run -it --memory=2G --memory-swap=3G ubuntu bash

This will limit the container to 2GB main memory, 3GB total (main +

swap). To check that this is working, we can run a load simulator; for

example, the stress program present in the Ubuntu repositories:

root@e05a311b401e:/# stress -m 4 --vm-bytes 8G

You will see a “FAILED” notification from the stress output. If you tail

the syslog on the hosting machine, you will be able to read something

similar to:

Aug 15 12:09:03 host kernel: [1340695.340552] Memory

cgroup out of memory: Kill process 22607 (stress) score

210 or sacrifice child

Aug 15 12:09:03 host kernel: [1340695.340556] Killed

process 22607 (stress) total-vm:8396092kB, anon-

rss:363184kB, file-rss:176kB, shmem-rss:0kB

Using Docker stats, you can check current memory usage and limits. If

you are using Kubernetes, you can actually book the resources that your

application needs to run properly and define maximum limits using

requests and limits on each pod definition:

[...]
 - name: wp
 image: wordpress
 resources:
 requests:
 memory: “64Mi”
 cpu: “250m”
 limits:
 memory: “128Mi”
 cpu: “500m”

[...]

STATIC VULNERABILITY SCANNING

Containers are isolated black boxes: if they are doing their work as

expected, it’s easy to forget which software and version is specifically

running inside. Maybe a container is performing like a charm from

the operational point of view, but it’s running version X.Y.Z of the web

server, which happens to suffer from a critical security flaw. This flaw

was fixed long ago upstream, but not in your local image. This kind

of problem can go unnoticed for a long time if you don’t take the

appropriate measures.

Best practices: Picturing the containers as immutable atomic units is

really nice for architecture design, but from the security perspective,

you need to regularly inspect their contents:

•	 Update and rebuild your images periodically to grab the

newest security patches. Of course, you will also need a pre-

production testbench to make sure these updates are not

breaking production.

•	 Live-patching containers is usually considered a bad practice.

The pattern is to rebuild the entire image with each update.

Docker has declarative, efficient, easy-to-understand build

systems, so this is easier than it may sound at first. Use software

from a distributor that guarantees security updates. Anything

you install manually out of the distro, you have to manage

security patching yourself.

•	 Docker and microservice-based approaches consider

progressively rolling over updates without disrupting uptime a

fundamental requisite of their model.

•	 User data is clearly separated from the images, making this

whole process safer.

•	 Keep it simple. Minimal systems expect less frequent updates.

Remember the intro: less software and moving parts equals

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

5

DOCKER SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

less attack surface and updating headaches. Try to split your

containers if they get too complex.

•	 Use a vulnerability scanner. There are plenty out there, both free

and commercial. Try to stay up-to-date on the security issues

of the software you use subscribing to the mailing lists, alert

services, etc.

•	 Integrate this vulnerability scanner as a mandatory step of your

CI/CD and automate where possible; don’t just manually check

the images now and then.

Example: There are multiple Docker images registry services that offer

image scanning. For this example, we decided to use CoreOS Quay,

which uses the open-source Docker security image scanner Clair. Quay

is a commercial platform but some services are free to use. You can

create a personal trial account by following these instructions.

Once you have your account, go to Account Settings and set a new

password (you need this to create repos).

Click on the + symbol on your top right and create a new public repo:

We go for an empty repository here, but you have several other options,

as you can see in the image above.

Now, from the command line, we log into the Quay registry and push a

local image:

docker login quay.io

docker push quay.

io/<your_quay_user>/<your_quay_image>:<tag>

Once the image is uploaded into the repo, you can click on its ID and

inspect the image security scan, ordered by severity, with the associated

CVE report link and upstream patched package versions.

RUNTIME CONTAINER SECURITY
DOCKER INTRUSION DETECTION
In the previous sections, we covered the static aspects of Docker

security: vulnerable kernels, unreliable base images, capabilities that

are granted or denied at launch-time, etc. But what if, despite all these,

the image has been compromised during runtime and starts to show

suspicious activity?

Best practices:

•	 All the previously described static countermeasures do not cover

all attack vectors. What if your own in-house application has a

vulnerability? Or attackers are using a 0-day not detected by the

scanning? Runtime security can be compared to Windows anti-

virus scanning: detect and prevent an existing break from further

penetration.

•	 Do not use runtime protection as a replacement for any other

static up-front security practices: Attack prevention is always

preferable to attack detection. Use it as an extra layer of peace-

of-mind.

•	 Having generous logs and events from your services and hosts,

correctly stored and easily searchable and correlated with any

change you do, will help a lot when you have to do a post-

mortem analysis.

Example: Sysdig Falco is an open-source behavioral monitoring

software designed to detect anomalous containerized activity. Sysdig

Falco works as an intrusion detection system on any Linux host,

although it is particularly useful when using Docker since it supports

container-specific contexts like container.id, container.image,

Kubernetes resources, or namespaces for its rules.

Falco comes with a default ruleset to spot behaviors like binary

directories being modified, writes below, and many other activities that

could be a sign some type of malicious activity is occurring. Falco rules

can trigger notifications on multiple anomalous activities. Let’s show a

simple example of someone running an interactive shell in one of the

production containers.

First, we will install Falco as a container on the host: docker pull
sysdig/falco

docker run -i -t --name falco --privileged -v /var/run/

docker.sock:/host/var/run/docker.sock -v /dev:/host/dev -v

/proc:/host/proc:ro -v /boot:/host/boot:ro -v /lib/

modules:/host/lib/modules:ro -v /usr:/host/usr:ro sysdig/

falco

And then we will run an interactive shell in a Nginx container:

docker run -d --name nginx nginx

docker exec -it nginx bash

On the hosting machine, tail the /var/log/syslog file and you will be able

to read:

https://quay.io/plans/
https://quay.io/plans/
https://github.com/draios/falco/blob/dev/rules/falco_rules.yaml

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

6

DOCKER SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

Aug 15 21:25:31 host falco: 21:25:31.159081055: Debug

 Shell spawned by untrusted binary (user=root shell=sh

 parent=anacron cmdline=sh -c run-parts --report /etc/

cron.weekly pcmdline=anacron -dsq)

Sysdig Falco doesn’t need to modify or instrument containers in any

way! This is just a trivial example of Falco capabilities; check out these

examples to learn more.

DETECTING AND BLOCKING ATTACKS ON
ORCHESTRATED MICROSERVICES

Containers are the base building block of a service that is managed

by popular orchestrators like Kubernetes or Docker Swarm. There are

many cases where the same image will be used in different areas of your

infrastructure depending on what that specific service that image is

providing to an application — think load balancer images like HAProxy

or Nginx.

Often, teams apply standard security policies to an image and don’t

differentiate at the application and orchestration layer, which can

leave holes in the service by trying to protect everything via blanketed

policies. This is where tight integrations with an orchestrator and the

metadata they provide is needed to differentiate between the services

that are running an image.

Best practices:

•	 Differentiate between images by using orchestration and

container labels for more granular policies.

•	 Take actions like killing or pausing a container when a policy

has been violated. Often, the orchestrator will spin up a new

container bringing the environment to a safe state.

•	 Rely on orchestration metadata rather than trying to manually

update container image hashes.

Example: Let’s look into preventing data exfiltration in Kubernetes

with Sysdig Secure. Sysdig Secure is a container security platform that

provides run-time security and forensics. Sysdig Secure installs as a

privileged container on the host and instruments the underlying kernel

to see all system calls that are happening on the host. The container

also integrates with Kubernetes APIs to tag all file opens, processes, etc.

from being passed through the data pipeline.

Let’s first build a policy to detect outbound connections from a Redis

data service. This policy is scoped by kubernetes.deployment.

name = redis, meaning that and pods/containers that fall under that

specific deployment will have this policy applied regardless of what

region or host that container resides on. Next, apply a rule to detect

any outbound connections coming from that service.

The step above will detect any outbound connection from the Redis

deployment, but what about taking actions to stop the data exfiltration

event? Actions can be taken based on any policy violation in Sysdig

Secure. In this case, we’ll want to stop the container to prevent data

from leaving, and then Kubernetes will spin up a new container to

return the Redis service to a steady state. We’ll cover figuring out how

data exfiltration, intrusions, and other events occur in the next section,

Incident Response.

These events can also be explored easily through topology maps to

quickly see where policy violations are occurring in your infrastructures,

as well as any dependencies the Kubernetes services have on each other.

INCIDENT RESPONSE

POST-MORTEM ANALYSIS

Incident response becomes harder in container environments because

of their ephemeral nature. A bad actor can delete a container after an

attack to remove all traces of any file access or network activity. Not to

mention, gaining visibility into what is happening inside a container in

the first place is very difficult.

Best practices:

•	 Log everything that’s from stdout in containers across your

infrastructure.

•	 Capture network, file, system call, and user data from inside

the container around any policy violation.

•	 Commit containers that have policy violations so that they

can be examined and ran outside of production.

Example: Forensic analysis with Sysdig Inspect. Inspect is an

open-source interface for container troubleshooting and security

investigation. It can be coupled with Sysdig Secure to do deep analysis

on Sysdig captures. A capture is a .scap file of all system calls that

happened over a period of time (for anyone who has done network

forensic analysis before, this is very similar to a .pcap file). Sysdig Secure

allows users to take a buffering capture to collect data pre and post any

security violation, which can be tuned on a per-policy basis to decide

https://quay.io/plans/

D
Z
O
N
E
.C

O
M
/R

E
F
C
A
R
D
Z

7

DOCKER SECURITY

BROUGHT TO YOU IN PARTNERSHIP WITH

the window of data to collect pre and post policy violations. Captures

can also be manually initiated from the sysdig open-source tool or via

the Sysdig Secure UI.

Once a capture has been taken, you can read the capture file with

Sysdig, Csysdig, or Sysdig Inspect. In this case, let’s look at what a

rootkit installation would look like in Inspect. The overview page offers

an out-of-the-box, at-a-glance summary of the content of the capture

file. Content is organized in tiles, each of which shows the value of

a relevant metric and its trend. Tiles are organized in categories to

surface useful information more clearly and are the starting point for

investigations and drill downs. The timeline can be used to drill into

sub-second granularity of all the events happening on the system.

From there, additional filtering can be done to view individual files,
network connections, or threads from a process. In this case, we’re

looking at all files written by the tar process.

You can even go a layer deeper within the forensic analysis and inspect

contents written to a file even after the offending container is long gone.

Having a quick container-native workflow for forensics investigation

is critical in container environments where services are coming and

going, while at the same time, container density and the abstraction of

services are increasing.

CONCLUSION

In this Refcard, we’ve walked from the first principles of security before

containers even enter production environments all the way up to the

more complex analysis of a rootkit installation. In this card, we’ve used

components baked into the Docker runtime, open source tools like Clair

and Falco, and even performed deep system call forensic analysis with

Sysdig Secure.

 As you can see, Docker security can start very simply but grow

complex as you actually take containers into production. Get

experience early and then grow your security sophistication to what

your environment requires.

Written by Knox Anderson, Product Marker, Sysdig
Knox Anderson is a container aficionado, working in product marketing at Sysdig focused on security and forensic solutions for

containers and microservices. Prior to joining Sysdig he first discovered containers as an easy way to demo complex products

like distributed SQL databases and has been helping companies of all sizes make their experience of running containers in

production easier. Knox holds a BS in Business Management Information Systems and Services from Boston University.

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

DZone communities deliver over 6 million pages each month

to more than 3.3 million software developers, architects and

decision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles,

source code and more.

https://quay.io/plans/

